Advertisement

Current Oral Health Reports

, Volume 5, Issue 2, pp 89–95 | Cite as

Vitamin Status and Mineralized Tissue Development

  • Kimie Nakagawa
  • Yumi Okubo
  • Ritsuko MasuyamaEmail author
Oral Disease and Nutrition (F Nishimura, Section Editor)
  • 41 Downloads
Part of the following topical collections:
  1. Topical Collection on Oral Disease and Nutrition

Abstract

Purpose of Review

The physiological control of mineralized tissue development is mediated by two processes: mineralization, such as bone formation due to osteoblast activity, and mineralized tissue destruction by osteoclast bone resorption. In this system, nutritional status, including vitamin intake, influences each regulatory processes, although definite responding mechanisms in target cells vary according to each compound.

Recent Findings

In contrast with water-soluble vitamins that constant supply is required, fat-soluble vitamins such as vitamin D and K are stored in the liver and fat tissue for long time. They are metabolized into congeneric compounds with various activities to participate in the local mineralization process in the body.

Summary

During physiological or non-physiological mineralization, the local actions of vitamin D and K are regulated by nutrient factor derived from dietary supply, and influenced by systemic calcium metabolism and homeostasis.

Keywords

Calcium absorption Bone mineralization Elastic fiber calcification 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. 1.
    Steenbock H, Black A. Fat-soluble vitamins XXIII. The induction of growth-promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light. J Biol Chem. 1925;64:263–98.Google Scholar
  2. 2.
    Shearer MJ, Vitamin K. Vitamin K. Lancet. 1995;345:229–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood. 1999;93(6):1798–808.PubMedGoogle Scholar
  4. 4.
    Zhu JG, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;10:15650–5.CrossRefGoogle Scholar
  5. 5.
    DeLuca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014;3:8–15.Google Scholar
  6. 6.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–76.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    •• Uekawa A, Yamanaka H, Lieben L, Kimira Y, Uehara M, Yamamoto Y, et al. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells. FASEB J. 2018. A recent review, which describes vitamin D-independent transcellular calcium absorption.;32:1903–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Masuyama R, Nakaya Y, Tanaka S, Tsurukami H, Nakamura T, Watanabe S, et al. Dietary phosphorus restriction reverses the impaired bone mineralization in vitamin D receptor knockout mice. Endocrinology. 2001;142:494–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Balsan S, et al. Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. J Clin Invest. 1986;77:61–1667.CrossRefGoogle Scholar
  10. 10.
    Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology. 2009;136:1317–27. e1311-12 CrossRefPubMedGoogle Scholar
  11. 11.
    Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekline K, et al. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology. 1999;140:1005–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999;140:4982–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Masuyama R, Nakaya Y, Katsumata S, Kajita Y, Uehara M, Tanaka S, et al. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J Bone Miner Res. 2003;18:1217–26.CrossRefPubMedGoogle Scholar
  14. 14.
    Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, et al. Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem. 2004;279:16754–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Fraser WD. Hyperparathyroidism. Lancet. 2009;374:145–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Fu Q, Manolagas SC, O’Brien CA. Parathyroid hormone controls receptor activator of NF-κB ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol. 2006;26:6453–68.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW. Activation of receptor activator of NF-κB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26:6469–86.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Galli C, Zella LA, Fretz JA, Fu Q, Pike JW, Weinstein RS, et al. Targeted deletion of a distant transcriptional enhancer of the receptor activator of nuclear factor-kappaB ligand gene reduces bone remodeling and increases bone mass. Endocrinology. 2008;149:146–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Meyer MB, Goetsch PD, Pike JW. Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J Steroid Biochem Mol Biol. 2010;121:136–41.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lieben L, Masuyama R, Torrekens S, van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lieben L, Carmeliet G. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis. Bone. 2013;54:237–43.CrossRefPubMedGoogle Scholar
  22. 22.
    van Driel M, Koedam M, Buurman CJ, Roelse M, Weyts F, Chiba H, et al. Evidence that both 1alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. J Cell Biochem. 2006;99:922–35.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou S, Glowacki J, Kim SW, Hahne J, Geng S, Mueller SM, et al. Clinical characteristics influence in vitro action of 1,25-dihydroxyvitamin D3 in human marrow stromal cells. J Bone Miner Res. 2012;27:1992–2000.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gardiner EM, et al. Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J. 2000;14:1908–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Vermeer C, Jie KS, Knapen MH. Role of vitamin K in bone metabolism. Annu Rev Nutr. 1995;15:1–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Morris DP, Stevens RD, Wright DJ, Stafford DW. Processive post-translational modification. Vitamin K-dependent carboxylation of a peptide substrate. J Biol Chem. 1995;270:30491–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Stafford DW. The vitamin K cycle. J Thromb Haemost. 2005;3(8):1873–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Shearer MJ, Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost. 2008;100:530–47.CrossRefPubMedGoogle Scholar
  29. 29.
    Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J Biol Chem. 2008;283:11270–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakagawa K, Hirota Y, Sawada N, Yuge N, Watanabe M, Uchino Y, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468:117–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem. 2013;288:33071–80.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Takada T, Yamanashi Y, Konishi K, Yamamoto T, Toyoda Y, Masuo Y, et al. NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy. Sci Transl Med. 2015;7(275):275ra23.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsugawa N, Shiraki M, Suhara Y, Kamao M, Ozaki R, Tanaka K, et al. Low plasma phylloquinone concentration is associated with high incidence of vertebral fracture in Japanese women. J Bone Miner Metab. 2008;26:79–85.CrossRefPubMedGoogle Scholar
  34. 34.
    Iwamoto J, Takada T, Sato Y. Vitamin K nutritional status and undercarboxylated osteocalcin in postmenopausal osteoporotic women treated with bisphosphonates. Asia Pac J Clin Nutr. 2014;23(2):256–62.PubMedGoogle Scholar
  35. 35.
    •• Hirota Y, Nakagawa K, Sawada N, Okuda N, Suhara Y, Uchino Y, et al. Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1. PLoS One. 2015;10(4):e0125737. Authors demonstrated the enzymatic function of UBIAD1 family and clarified bioactive structure. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tabb MM, Sun A, Zhou C, Grün F, Errandi J, Romero K, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem. 2003;278:43919–27.CrossRefPubMedGoogle Scholar
  37. 37.
    Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem. 2006;281:16927–34.CrossRefPubMedGoogle Scholar
  38. 38.
    Rezaie AR, Bae JS, Manithody C, Qureshi SH, Yang L. Protein Z-dependent protease inhibitor binds to the C-terminal domain of protein Z. J Biol Chem. 2008;283(29):19922–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Price PA, Urist MR, Otawara Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun. 1983;117(3):765–71.CrossRefPubMedGoogle Scholar
  40. 40.
    Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047.CrossRefPubMedGoogle Scholar
  41. 41.
    Coutu DL, Wu JH, Monette A, Rivard GÉ, Blostein MD, Galipeau J. Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem. 2008;283(26):17991–8001.CrossRefPubMedGoogle Scholar
  42. 42.
    Viegas CS, et al. Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol. 2009;175(6):2288–98.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    • Okubo Y, Masuyama R, Iwanaga A, Koike Y, Kuwatsuka Y, Ogi T, et al. Calcification in dermal fibroblasts from a patient with GGCX syndrome accompanied by upregulation of osteogenic molecules. PLoS One. 2017;12(5):e0177375. Authors demonstrated a role of GGCX in ectopic calcification in dermal fibroblasts. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lokmic Z, et al. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 2012;296:139–85.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Hygienic SciencesKobe Pharmaceutical UniversityKobeJapan
  2. 2.Department of DermatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  3. 3.Research and Clinical Center for Yusho and Dioxin (ReC2YD)Kyushu University HospitalFukuokaJapan
  4. 4.Department of Molecular Bone BiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations