Current Oral Health Reports

, Volume 5, Issue 1, pp 70–77 | Cite as

Challenges in the Eradication of Enterococcus faecalis and its Implications on Health

  • Eyal RosenEmail author
  • Ilana Kolodkin-Gal
  • Igor Tsesis
Microbiology (M Klein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microbiology


Enterococcus faecalis is frequently found in infected root canals of teeth with persistent apical periodontitis.


To review the challenges involved in the eradication of persistent Enterococcus faecalis infections and their impact on human health.

Recent Findings

In the root canal system, Enterococcus faecalis resides in biofilm communities that are able to resist a wide range of harsh conditions and treatments and persist for years. Various virulence and resistance factors provide Enterococcus faecalis capabilities in adherence, colonization, and biofilm formation, which is much more resistant to antibacterial agents than planktonic bacteria. These capabilities explain its persistence in root canal infections. To date, the available therapeutic tools to efficiently eradicate Enterococcus faecalis infections remain limited. Recently, in a model mimicking Enterococcus faecalis root canal infection, novel biofilm inhibitors and dispersing agents, such as D-Leucine, presented superior capability over sodium hypochlorite, the frequently used root-canal antibacterial irrigation solution, in the eradication of Enterococcus faecalis.


These recent studies present promising treatment regimens for Enterococcus faecalis persistent infections.


Enterococcus faecalis Biofilm Root canal Eradication Health implications 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56(1):187–209. Scholar
  2. 2.
    Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–99. Scholar
  3. 3.
    Aguilar C, Vlamakis H, Losick R, Kolter R. Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol. 2007;10(6):638–43. Scholar
  4. 4.
    Kolter R, Greenberg EP. Microbial sciences: the superficial life of microbes. Nature. 2006;441(7091):300–2. Scholar
  5. 5.
    Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13(1):20–6. Scholar
  6. 6.
    Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol. 2013;21(11):594–601. Scholar
  7. 7.
    Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57(1):677–701. Scholar
  8. 8.
    Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol. 2013;11(3):157–68. Scholar
  9. 9.
    • Rosen E, Tsesis I, Elbahary S, Storzi N, Kolodkin-Gal I. Eradication of Enterococcus faecalis biofilms on human dentin. Front Microbiol. 2016;7:2055. Scholar
  10. 10.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93. Scholar
  11. 11.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22. Scholar
  12. 12.
    Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40. Scholar
  13. 13.
    Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426(6964):306–10. Scholar
  14. 14.
    Stewart PS. Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994;38(5):1052–8. Scholar
  15. 15.
    Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol : IJMM. 2002;292(2):107–13. CrossRefPubMedGoogle Scholar
  16. 16.
    Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8. Scholar
  17. 17.
    Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, et al. Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol. 2015;81(8):2696–705. Scholar
  18. 18.
    Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis. 2007;58(2):163–70. Scholar
  19. 19.
    Haapasalo M, Shen YA. Current therapeutic options for endodontic biofilms. Endod Top. 2012;22:79–98.CrossRefGoogle Scholar
  20. 20.
    Ricucci D, Siqueira JF Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. 2010;36(8):1277–88. Scholar
  21. 21.
    Zhang CJ, Du JR, Peng ZX. Correlation between Enterococcus faecalis and persistent Intraradicular infection compared with primary intraradicular infection: a systematic review. J Endod. 2015;41(8):1207–13. Scholar
  22. 22.
    Meire MA, Coenye T, Nelis HJ, De Moor RJ. Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int Endod J. 2012;45(5):482–91. Scholar
  23. 23.
    Du T, Shi Q, Shen Y, Cao Y, Ma J, Lu X, et al. Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J Endod. 2013;39(11):1438–43. Scholar
  24. 24.
    Tay CX, Quah SY, Lui JN, VS Y, Tan KS. Matrix metalloproteinase inhibitor as an antimicrobial agent to eradicate Enterococcus faecalis biofilm. J Endod. 2015;41(6):858–63. Scholar
  25. 25.
    Anderson AC, Jonas D, Huber I, Karygianni L, Wolber J, Hellwig E, et al. Enterococcus faecalis from food, clinical specimens, and oral sites: prevalence of virulence factors in association with biofilm formation. Front Microbiol. 2015;6:1534. PubMedGoogle Scholar
  26. 26.
    John G, Kumar KP, Gopal SS, Kumari S, Reddy BK. Enterococcus faecalis, a nightmare to endodontist: a systematic review. Afr J Microbiol Res. 2015:898–908.Google Scholar
  27. 27.
    Sjolund M, Wreiber K, Andersson DI, Blaser MJ, Engstrand L. Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann Intern Med. 2003;139(6):483–7. Scholar
  28. 28.
    Agudelo Higuita NI, Huycke MM. Enterococcal disease, epidemiology, and implications for treatment. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston2014.Google Scholar
  29. 29.
    Noskin GA, Peterson LR, Warren JR. Enterococcus faecium and Enterococcus faecalis bacteremia: acquisition and outcome. Clin Infect Dis. 1995;20(2):296–301. Scholar
  30. 30.
    Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis. 1998;4(2):239–49. Scholar
  31. 31.
    Kim JY, Song HS, Kim YB, Kwon J, Choi JS, Cho YJ, et al. Genome sequence of a commensal bacterium, Enterococcus faecalis CBA7120, isolated from a Korean fecal sample. Gut Pathog. 2016;8(1):62. Scholar
  32. 32.
    Evans AC, Chinn AL. The Enterococci: with special reference to their association with human disease. J Bacteriol. 1947;54(4):495–512.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lancefield RC. A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med. 1933;57(4):571–95. Scholar
  34. 34.
    Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 1929;10:226–36.PubMedCentralGoogle Scholar
  35. 35.
    Sherman JM. The streptococci. Bacteriol Rev. 1937;1(1):3–97.PubMedPubMedCentralGoogle Scholar
  36. 36.
    E J, Jiang YT, Yan PF, Liang JP. Biological changes of Enterococcus faecalis in the viable but nonculturable state. Genet Mol Res : GMR. 2015;14(4):14790–801. Scholar
  37. 37.
    Souto R, Colombo AP. Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Arch Oral Biol. 2008;53(2):155–60. Scholar
  38. 38.
    Flanagan D. Enterococcus faecalis and dental implants. J Oral Implantol. 2017;43(1):8–11. Scholar
  39. 39.
    Kouidhi B, Zmantar T, Mahdouani K, Hentati H, Bakhrouf A. Antibiotic resistance and adhesion properties of oral Enterococci associated to dental caries. BMC Microbiol. 2011;11(1):155. Scholar
  40. 40.
    Molander A, Reit C, Dahlen G, Kvist T. Microbiological status of root-filled teeth with apical periodontitis. Int Endod J. 1998;31(1):1–7. Scholar
  41. 41.
    Zapata RO, Branante CM, de Moraes IG, Bernardineli N, Gasparoto TH, Graeff MSZ, et al. Confocal laser scanning microscopy is appropriate to detect viability of Enterococcus faecalis in infected dentin. J Endod. 2008;34(10):1198–201. Scholar
  42. 42.
    Paganelli FL, Willems RJ, Leavis HL. Optimizing future treatment of enterococcal infections: attacking the biofilm? Trends Microbiol. 2012;20(1):40–9. Scholar
  43. 43.
    Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008;100(1):1–18. Scholar
  44. 44.
    Wang QQ, Zhang CF, Chu CH, Zhu XF. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int J Oral Sci. 2012;4(1):19–23. Scholar
  45. 45.
    Kishen A. Advanced therapeutic options for endodontic biofilms. Endod Top. 2012;22:99–123.CrossRefGoogle Scholar
  46. 46.
    Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A. 2005;102(31):11076–81. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kolodkin-Gal I, Elsholz AK, Muth C, Girguis PR, Kolter R, Losick R. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev. 2013;27(8):887–99. Scholar
  48. 48.
    Ramos I, Dietrich LE, Price-Whelan A, Newman DK. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol. 2010;161(3):187–91. Scholar
  49. 49.
    Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417(6888):552–5. Scholar
  50. 50.
    Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, et al. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother. 2003;47(11):3580–5. Scholar
  51. 51.
    de Almeida J, Hoogenkamp M, Felippe WT, Crielaard W, van der Waal SV. Effectiveness of EDTA and modified salt solution to detach and kill cells from Enterococcus faecalis biofilm. J Endod. 2016;42(2):320–3. Scholar
  52. 52.
    Wong AW, Tsang CS, Zhang S, Li KY, Zhang C, Chu CH. Treatment outcomes of single-visit versus multiple-visit non-surgical endodontic therapy: a randomised clinical trial. BMC Oral Health. 2015;15(1):162. Scholar
  53. 53.
    Wong AW, Zhang C, Chu CH. A systematic review of nonsurgical single-visit versus multiple-visit endodontic treatment. Clin Cosmet Investig Dent. 2014;6:45–56. Scholar
  54. 54.
    Manfredi M, Figini L, Gagliani M, Lodi G. Single versus multiple visits for endodontic treatment of permanent teeth. Cochrane Database Syst Rev. 2016;12:CD005296. PubMedGoogle Scholar
  55. 55.
    Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod. 2006;32(7):601–23. Scholar
  56. 56.
    Tsesis I, Rosen E, Schwartz-Arad D, Fuss Z. Retrospective evaluation of surgical endodontic treatment: traditional versus modern technique. J Endod. 2006;32(5):412–6. Scholar
  57. 57.
    Rubinstein RAKS. Short-term observation of the results of endodontic surgery with the use of surgical operation microscope and super-EBA as root end filling material. J Endod. 1999;25(1):43–8. Scholar
  58. 58.
    Tsesis I, Faivishevsky V, Kfir A, Rosen E. Outcome of surgical endodontic treatment performed by a modern technique: a meta-analysis of literature. J Endod. 2009;35(11):1505–11. Scholar
  59. 59.
    Gartner AH, Dorn SO. Advances in endodontic surgery. Dent Clin N Am. 1992;36(2):357–78.PubMedGoogle Scholar
  60. 60.
    • Tsesis I, Elbahary S, Venezia NB, Rosen E. Bacterial colonization in the apical part of extracted human teeth following root-end resection and filling: a confocal laser scanning microscopy study. Clin Oral Investig. 2017;22(1):267–74. Scholar
  61. 61.
    Peters LB, Wesselink PR, Buijs JF, van Winkelhoff AJ. Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J Endod. 2001;27(2):76–81. Scholar
  62. 62.
    Saleh IM, Ruyter IE, Haapasalo M, Orstavik D. Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. Int Endod J. 2004;37(3):193–8. Scholar
  63. 63.
    del Carpio-Perochena A, Bramante CM, de Andrade FB, Maliza AG, Cavenago BC, Marciano MA, et al. Antibacterial and dissolution ability of sodium hypochlorite in different pHs on multi-species biofilms. Clin Oral Investig. 2015;19(8):2067–73. Scholar
  64. 64.
    Louwakul P, Saelo A, Khemaleelakul S. Efficacy of calcium oxide and calcium hydroxide nanoparticles on the elimination of Enterococcus faecalis in human root dentin. Clin Oral Investig. 2016;21(3):865–71. Scholar
  65. 65.
    Slutzky H, Slutzky-Goldberg I, Weiss EI, Matalon S. Antibacterial properties of temporary filling materials. J Endod. 2006;32(3):214–7. Scholar
  66. 66.
    Chong BS, Owadally ID, Pitt Ford TR, Wilson RF. Antibacterial activity of potential retrograde root filling materials. Endod Dent Traumatol. 1994;10(2):66–70. Scholar
  67. 67.
    Grech L, Mallia B, Camilleri J. Characterization of set intermediate restorative material, biodentine, bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J. 2013;46(7):632–41. Scholar
  68. 68.
    Malkondu O, Karapinar Kazandag M, Kazazoglu EA. Review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int. 2014;2014:160951. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Naik MM, de Ataide Ide N, Fernandes M, Lambor R. Assessment of apical seal obtained after irrigation of root end cavity with MTAD followed by subsequent retrofilling with MTA and biodentine: an in vitro study. J Conserv Dent. 2015;18(2):132–5. Scholar
  70. 70.
    Ravichandra PV, Vemisetty H, Deepthi K, Reddy SJ, Ramkiran D, Krishna MJ, et al. Comparative evaluation of marginal adaptation of biodentine(TM) and other commonly used root end filling materials-an in vitro study. J Clin Diagn Res. 2014;8(3):243–5. Google Scholar
  71. 71.
    Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM. Biodentine material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent. 2014;15(3):147–58. Scholar
  72. 72.
    Soundappan S, Sundaramurthy JL, Raghu S, Natanasabapathy V. Biodentine versus mineral trioxide aggregate versus intermediate restorative material for retrograde root end filling: an in vitro study. J Dent (Tehran). 2014;11(2):143–9.Google Scholar
  73. 73.
    Newberry BM, Shabahang S, Johnson N, Aprecio RM, Torabinejad M. The antimicrobial effect of biopure MTAD on eight strains of Enterococcus faecalis: an in vitro investigation. J Endod. 2007;33(11):1352–4. Scholar
  74. 74.
    Giardino L, Ambu E, Savoldi E, Rimondini R, Cassanelli C, Debbia EA. Comparative evaluation of antimicrobial efficacy of sodium hypochlorite, MTAD, and Tetraclean against Enterococcus faecalis biofilm. J Endod. 2007;33(7):852–5. Scholar
  75. 75.
    Zhang R, Chen M, Lu Y, Guo X, Qiao F, Wu L. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: a comparison between EDTA, chlorhexidine, cetrimide, MTAD and QMix. Sci Rep. 2015;5(1):12944. Scholar
  76. 76.
    Rodig T, Endres S, Konietschke F, Zimmermann O, Sydow HG, Wiegand A. Effect of fiber insertion depth on antibacterial efficacy of photodynamic therapy against Enterococcus faecalis in rootcanals. Clin Oral Investig. 2017;21(5):1753–9. Scholar
  77. 77.
    Dengler V, Meier PS, Heusser R, Berger-Bachi B, McCallum N. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiol. 2011;11(1):16. Scholar
  78. 78.
    • Bucher T, Oppenheimer-Shaanan Y, Savidor A, Bloom-Ackermann Z, Kolodkin-Gal I. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ Microbiol Rep. 2015;7(6):990–1004. Scholar
  79. 79.
    Lam H, DC O, Cava F, Takacs CN, Clardy J, de Pedro MA, et al. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009;325(5947):1552–5. Scholar
  80. 80.
    Cava F, de Pedro MA, Lam H, Davis BM, Waldor MK. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 2011;30(16):3442–53. Scholar
  81. 81.
    Lupoli TJ, Tsukamoto H, Doud EH, Wang TS, Walker S, Kahne D. Transpeptidase-mediated incorporation of D-amino acids into bacterial peptidoglycan. J Am Chem Soc. 2011;133(28):10748–51. Scholar
  82. 82.
    • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627–9. Scholar
  83. 83.
    Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol. 2011;193(20):5616–22. Scholar
  84. 84.
    Sanchez CJ Jr, Prieto EM, Krueger CA, Zienkiewicz KJ, Romano DR, Ward CL, et al. Effects of local delivery of d-amino acids from biofilm-dispersive scaffolds on infection in contaminated rat segmental defects. Biomaterials. 2013;34(30):7533–43. Scholar
  85. 85.
    Yu C, Wu JJ, Contreras AE, Li QL. Control of nanofiltration membrane biofouling by Pseudomonas aeruginosa using D-tyrosine. J Membr Sci. 2012;423:487–94. Scholar
  86. 86.
    She P, Chen L, Liu H, Zou Y, Luo Z, Koronfel A, et al. The effects of d-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa. Microb Pathog. 2015;86:38–44. Scholar
  87. 87.
    Li J, Wang N. Foliar application of biofilm formation-inhibiting compounds enhances control of citrus canker caused by Xanthomonas citri subsp. citri. Phytopathology. 2014;104(2):134–42. Scholar
  88. 88.
    Koch AL. Microbial physiology and ecology of slow growth. Microbiol Mol Biol Rev : MMBR. 1997;61(3):305–18.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Hiyari S, Bennett KM. Dental diagnostics: molecular analysis of oral biofilms. J Dent Hyg : JDH / Am Dent Hyg Assoc. 2011;85(4):256–63.Google Scholar
  90. 90.
    Harmata AJ, Ma Y, Sanchez CJ, Zienkiewicz KJ, Elefteriou F, Wenke JC, et al. D-amino acid inhibits biofilm but not new bone formation in an ovine model. Clin Orthop Relat Res. 2015;473(12):3951–61. Scholar
  91. 91.
    Tsume Y, Incecayir T, Song X, Hilfinger JM, Amidon GL. The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: enhanced membrane permeability and enzymatic stability. Eur J Pharm Biopharm : Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2014;86(3):514–23. Scholar
  92. 92.
    Kolodkin-Gal I. Beyond the wall: can D-amino acids and small molecule inhibitors eliminate infections? Future Med Chem. 2017;9(9):843–6. Scholar
  93. 93.
    Zilm PS, Butnejski V, Rossi-Fedele G, Kidd SP, Edwards S, Vasilev K. D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment. PLoS One. 2017;12(2):e0170670. Scholar
  94. 94.
    Kaes C, Katz A, Hosseini MW. Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2 '-bipyridine units. Chem Rev. 2000;100(10):3553–90. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Endodontology, Maurice and Gabriela Goldschleger School of Dental MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations