Recent Advances in Adhesive Bonding: The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates
- 261 Downloads
Abstract
Purpose of review
To present an overview on the main agents (i.e. biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding.
Recent findings
According to studies retrieved for full-text reading (2014–2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (1) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (2) use of antioxidants, which may allow further polymerization reactions over time; (3) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (4) modification of the bonding procedure, which may be performed by using the ethanol-wet bonding (EWB) technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (5) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (6) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physicomechanical properties of the hybrid layer.
Summary
With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. In addition, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.
Keywords
Matrix metalloproteinase inhibitors Collagen Resins Crosslinking agents Dentin-bonding DentinNotes
Acknowledgements
Marco C. Bottino acknowledges start-up funds from the Indiana University School of Dentistry and the National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) [grant number DE023552]. The content of this review is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Compliance with Ethical Standards
Conflict of Interest
Eliseu A. Münchow and Marco C. Bottino declare that they have no conflicts of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
References
Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance
- 1.Tezvergil-Mutluay A, Mutluay M, Seseogullari-Dirihan R, Agee KA, Key WO, Scheffel DL, et al. Effect of phosphoric acid on the degradation of human dentin matrix. J Dent Res. 2013;92:87–91.CrossRefPubMedPubMedCentralGoogle Scholar
- 2.•• Pashley DH, Tay FR, Breschi L, Tjaderhane L, Carvalho RM, Carrilho M, et al. State of the art etch-and-rinse adhesives. Dent Mater. 2011;27:1–16. This article represents the state of the art of etch-and-rinse dental adhesives, explaining how bond strength degradation may occur under clinical conditions. CrossRefPubMedGoogle Scholar
- 3.•• Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011;27:17–28. This article represents the state of the art of self-etch dental adhesives, showing important chemical explanations concerning bond strength degradation of resin-dentin adhesion. CrossRefPubMedGoogle Scholar
- 4.•• De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84:118–32. This article is a classical study that critically reviewed the literature with regard to the durability of resin to dentin/enamel bonds. CrossRefPubMedGoogle Scholar
- 5.Brackett WW, Tay FR, Brackett MG, Dib A, Sword RJ, Pashley DH. The effect of chlorhexidine on dentin hybrid layers in vivo. Oper Dent. 2007;32:107–11.CrossRefPubMedGoogle Scholar
- 6.Carrilho MR, Geraldeli S, Tay F, de Goes MF, Carvalho RM, Tjaderhane L, et al. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res. 2007;86:529–33.CrossRefPubMedGoogle Scholar
- 7.Hebling J, Pashley DH, Tjaderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res. 2005;84:741–6.CrossRefPubMedGoogle Scholar
- 8.Tersariol IL, Geraldeli S, Minciotti CL, Nascimento FD, Paakkonen V, Martins MT, et al. Cysteine cathepsins in human dentin-pulp complex. J Endod. 2010;36:475–81.CrossRefPubMedGoogle Scholar
- 9.Zhang SC, Kern M. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int J Oral Sci. 2009;1:163–76.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.• Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22:211–22. This article is an important source of knowledge for understanding the chemical and physical degradation of resin-based dental materials. CrossRefPubMedGoogle Scholar
- 11.Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28:3757–85.CrossRefPubMedGoogle Scholar
- 12.Tjaderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer-a review. Dent Mater. 2013;29:999–1011.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Bedran-Russo AK, Yoo KJ, Ema KC, Pashley DH. Mechanical properties of tannic-acid-treated dentin matrix. J Dent Res. 2009;88:807–11.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Castellan CS, Pereira PN, Grande RH, Bedran-Russo AK. Mechanical characterization of proanthocyanidin-dentin matrix interaction. Dent Mater. 2010;26:968–73.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Castellan CS, Pereira PN, Viana G, Chen SN, Pauli GF, Bedran-Russo AK. Solubility study of phytochemical cross-linking agents on dentin stiffness. J Dent. 2010;38:431–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Lee J, Sabatini C. Glutaraldehyde collagen cross-linking stabilizes resin-dentin interfaces and reduces bond degradation. Eur J Oral Sci. 2017;125:63–71.CrossRefPubMedGoogle Scholar
- 17.Souza IM, Araujo CS, Soares CJ, Faria ESAL. Effect of dentin pretreatment on bond strength stability of self-etching and etch-and-rinse adhesives to intracoronally bleached dentin. J Adhes Dent. 2016;18:349–54.PubMedGoogle Scholar
- 18.Venigalla BS, Jyothi P, Kamishetty S, Reddy S, Cherukupalli RC, Reddy DA. Resin bond strength to water versus ethanol-saturated human dentin pretreated with three different cross-linking agents. J Conserv Dent. 2016;19:555–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Carvalho C, Fernandes FP, Freitas Vda P, Franca FM, Basting RT, Turssi CP, et al. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin. J Appl Oral Sci. 2016;24:211–7.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Dikmen B, Gurbuz O, Ozsoy A, Eren MM, Cilingir A, Yucel T. Effect of different antioxidants on the microtensile bond strength of an adhesive system to sodium hypochlorite-treated dentin. J Adhes Dent. 2015;17:499–504.PubMedGoogle Scholar
- 21.Silva Sousa AB, Vidal CM, Leme-Kraus AA, Pires-de-Souza FC, Bedran-Russo AK. Experimental primers containing synthetic and natural compounds reduce enzymatic activity at the dentin-adhesive interface under cyclic loading. Dent Mater. 2016;32:1248–55.CrossRefPubMedGoogle Scholar
- 22.Khamverdi Z, Rezaei-Soufi L, Rostamzadeh T. The effect of epigallocatechin gallate on the dentin bond durability of two self-etch adhesives. J Dent (Shiraz). 2015;16:68–74.Google Scholar
- 23.Gomes Franca FM, Vaneli RC, Conti Cde M, Basting RT, do Amaral FL, Turssi CP. Effect of chlorhexidine and ethanol application on long-term push-out bond strength of fiber posts to dentin. J Contemp Dent Pract. 2015;16:547–53.CrossRefPubMedGoogle Scholar
- 24.Li H, Li T, Li X, Zhang Z, Li P, Li Z. Morphological effects of MMPs inhibitors on the dentin bonding. Int J Clin Exp Med. 2015;8:10793–803.PubMedPubMedCentralGoogle Scholar
- 25.Toman M, Toksavul S, Tamac E, Sarikanat M, Karagozoglu I. Effect of chlorhexidine on bond strength between glass-fiber post and root canal dentine after six month of water storage. Eur J Prosthodont Restor Dent. 2014;22:29–34.PubMedGoogle Scholar
- 26.Abu Nawareg M, Elkassas D, Zidan A, Abuelenain D, Abu Haimed T, Hassan AH, et al. Is chlorhexidine-methacrylate as effective as chlorhexidine digluconate in preserving resin dentin interfaces? J Dent. 2016;45:7–13.CrossRefPubMedGoogle Scholar
- 27.Chauhan K, Basavanna RS, Shivanna V. Effect of bromelain enzyme for dentin deproteinization on bond strength of adhesive system. J Conserv Dent. 2015;18:360–3.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Diolosa M, Donati I, Turco G, Cadenaro M, Di Lenarda R, Breschi L, et al. Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems. Biomacromolecules. 2014;15:4606–13.CrossRefPubMedGoogle Scholar
- 29.Cecchin D, Pin LC, Farina AP, Souza M, Vidal Cde M, Bello YD, et al. Bond strength between fiber posts and root dentin treated with natural cross-linkers. J Endod. 2015;41:1667–71.CrossRefPubMedGoogle Scholar
- 30.Gotti VB, Feitosa VP, Sauro S, Correr-Sobrinho L, Leal FB, Stansbury JW, et al. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation. J Adhes Dent. 2015;17:35–44.PubMedGoogle Scholar
- 31.Loguercio AD, Stanislawczuk R, Malaquias P, Gutierrez MF, Bauer J, Reis A. Effect of minocycline on the durability of dentin bonding produced with etch-and-rinse adhesives. Oper Dent. 2016;41:511–9.CrossRefPubMedGoogle Scholar
- 32.• Feitosa SA, Palasuk J, Kamocki K, Geraldeli S, Gregory RL, Platt JA, et al. Doxycycline-encapsulated nanotube-modified dentin adhesives. J Dent Res. 2014;93:1270–6. This article shows how nanotubes can be used as a delivery system for the increase/stabilization of resin-dentin bonds, which may present an innovation in modern adhesive dentistry. CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Sabatini C, Ortiz PA, Pashley DH. Preservation of resin-dentin interfaces treated with benzalkonium chloride adhesive blends. Eur J Oral Sci. 2015;123:108–15.CrossRefPubMedGoogle Scholar
- 34.Sabatini C, Pashley DH. Aging of adhesive interfaces treated with benzalkonium chloride and benzalkonium methacrylate. Eur J Oral Sci. 2015;123:102–7.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Pupo YM, Farago PV, Nadal JM, Simao LC, Esmerino LA, Gomes OM, et al. Effect of a novel quaternary ammonium methacrylate polymer (QAMP) on adhesion and antibacterial properties of dental adhesives. Int J Mol Sci. 2014;15:8998–9015.CrossRefPubMedPubMedCentralGoogle Scholar
- 36.• Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater. 2008;86:330–4. This article brings one of the first insights concerning dentin biomodification with collagen crosslinking agents. CrossRefPubMedGoogle Scholar
- 37.Frassetto A, Breschi L, Turco G, Marchesi G, Di Lenarda R, Tay FR, et al. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability: a literature review. Dent Mater. 2016;32:e41–53.CrossRefPubMedGoogle Scholar
- 38.Bedran-Russo AK, Vidal CM, Dos Santos PH, Castellan CS. Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds. J Biomed Mater Res B Appl Biomater. 2010;94:250–5.PubMedPubMedCentralGoogle Scholar
- 39.Mazzoni A, Angeloni V, Apolonio FM, Scotti N, Tjaderhane L, Tezvergil-Mutluay A, et al. Effect of carbodiimide (EDC) on the bond stability of etch-and-rinse adhesive systems. Dent Mater. 2013;29:1040–7.CrossRefPubMedGoogle Scholar
- 40.Tezvergil-Mutluay A, Mutluay MM, Agee KA, Seseogullari-Dirihan R, Hoshika T, Cadenaro M, et al. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro. J Dent Res. 2012;91:192–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Mazzoni A, Apolonio FM, Saboia VP, Santi S, Angeloni V, Checchi V, et al. Carbodiimide inactivation of MMPs and effect on dentin bonding. J Dent Res. 2014;93:263–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Scheffel DL, Hebling J, Scheffel RH, Agee K, Turco G, de Souza Costa CA, et al. Inactivation of matrix-bound matrix metalloproteinases by cross-linking agents in acid-etched dentin. Oper Dent. 2014;39:152–8.CrossRefPubMedGoogle Scholar
- 43.Singh P, Nagpal R, Singh UP, Manuja N. Effect of carbodiimide on the structural stability of resin/dentin interface. J Conserv Dent. 2016;19:501–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Liu N, Li F, Chen YJ, Zhang L, Lu S, Kang JJ, et al. The inhibitory effect of a polymerisable cationic monomer on functional matrix metalloproteinases. J Dent. 2013;41:1101–8.CrossRefPubMedGoogle Scholar
- 45.Epasinghe DJ, Yiu CK, Burrow MF, Tay FR, King NM. Effect of proanthocyanidin incorporation into dental adhesive resin on resin-dentine bond strength. J Dent. 2012;40:173–80.CrossRefPubMedGoogle Scholar
- 46.Liu Y, Dusevich V, Wang Y. Proanthocyanidins rapidly stabilize the demineralized dentin layer. J Dent Res. 2013;92:746–52.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.• Montagner AF, Sarkis-Onofre R, Pereira-Cenci T, Cenci MS. MMP Inhibitors on dentin stability: a systematic review and meta-analysis. J Dent Res. 2014;93:733–43. This article represents a systematic review of studies that used MMP inhibitors to produce resin-dentin bonding stability over time, which demonstrates that self-etching and etch-and-rinse adhesives are benefited by the use of chlorhexidine. CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Fang M, Liu R, Xiao Y, Li F, Wang D, Hou R, et al. Biomodification to dentin by a natural crosslinker improved the resin-dentin bonds. J Dent. 2012;40:458–66.CrossRefPubMedGoogle Scholar
- 49.Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.CrossRefPubMedGoogle Scholar
- 50.Boukpessi T, Menashi S, Camoin L, Tencate JM, Goldberg M, Chaussain-Miller C. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials. 2008;29:4367–73.CrossRefPubMedGoogle Scholar
- 51.Mazzoni A, Papa V, Nato F, Carrilho M, Tjaderhane L, Ruggeri Jr A, et al. Immunohistochemical and biochemical assay of MMP-3 in human dentine. J Dent. 2011;39:231–7.CrossRefPubMedGoogle Scholar
- 52.Sulkala M, Tervahartiala T, Sorsa T, Larmas M, Salo T, Tjaderhane L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol. 2007;52:121–7.CrossRefPubMedGoogle Scholar
- 53.Martin-De Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol. 2000;45:757–65.CrossRefPubMedGoogle Scholar
- 54.Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, et al. Zymographic analysis and characterization of MMP-2 and −9 forms in human sound dentin. J Dent Res. 2007;86:436–40.CrossRefPubMedGoogle Scholar
- 55.Dickinson DP. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit Rev Oral Biol Med. 2002;13:238–75.CrossRefPubMedGoogle Scholar
- 56.Scaffa PM, Vidal CM, Barros N, Gesteira TF, Carmona AK, Breschi L, et al. Chlorhexidine inhibits the activity of dental cysteine cathepsins. J Dent Res. 2012;91:420–5.CrossRefPubMedGoogle Scholar
- 57.Mohammadi Z, Abbott PV. Antimicrobial substantivity of root canal irrigants and medicaments: a review. Aust Endod J. 2009;35:131–9.CrossRefPubMedGoogle Scholar
- 58.Kim J, Uchiyama T, Carrilho M, Agee KA, Mazzoni A, Breschi L, et al. Chlorhexidine binding to mineralized versus demineralized dentin powder. Dent Mater. 2010;26:771–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 59.Loguercio AD, Hass V, Gutierrez MF, Luque-Martinez IV, Szezs A, Stanislawczuk R, et al. Five-year effects of chlorhexidine on the in vitro durability of resin/dentin interfaces. J Adhes Dent. 2016;18:35–42.PubMedGoogle Scholar
- 60.Stanislawczuk R, Reis A, Loguercio AD. A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin-dentin interfaces. J Dent. 2011;39:40–7.CrossRefPubMedGoogle Scholar
- 61.Yiu CK, Hiraishi N, Tay FR, King NM. Effect of chlorhexidine incorporation into dental adhesive resin on durability of resin-dentin bond. J Adhes Dent. 2012;14:355–62.PubMedGoogle Scholar
- 62.Mobarak EH. Effect of chlorhexidine pretreatment on bond strength durability of caries-affected dentin over 2-year aging in artificial saliva and under simulated intrapulpal pressure. Oper Dent. 2011;36:649–60.CrossRefPubMedGoogle Scholar
- 63.Campos EA, Correr GM, Leonardi DP, Barato-Filho F, Gonzaga CC, Zielak JC. Chlorhexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermo-mechanical stressing. J Dent. 2009;37:108–14.CrossRefPubMedGoogle Scholar
- 64.Zhou J, Tan J, Chen L, Li D, Tan Y. The incorporation of chlorhexidine in a two-step self-etching adhesive preserves dentin bond in vitro. J Dent. 2009;37:807–12.CrossRefPubMedGoogle Scholar
- 65.De Munck J, Mine A, Van den Steen PE, Van Landuyt KL, Poitevin A, Opdenakker G, et al. Enzymatic degradation of adhesive-dentin interfaces produced by mild self-etch adhesives. Eur J Oral Sci. 2010;118:494–501.CrossRefPubMedGoogle Scholar
- 66.Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, Salo T, et al. The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J Dent Res. 2001;80:1545–9.CrossRefPubMedGoogle Scholar
- 67.Lauhio A, Salo T, Tjaderhane L, Lahdevirta J, Golub LM, Sorsa T. Tetracyclines in treatment of rheumatoid arthritis. Lancet. 1995;346:645–6.CrossRefPubMedGoogle Scholar
- 68.Sorsa T, Tjaderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, et al. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med. 2006;38:306–21.CrossRefPubMedGoogle Scholar
- 69.Acharya MR, Venitz J, Figg WD, Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resist Updat. 2004;7:195–208.CrossRefPubMedGoogle Scholar
- 70.Ryan ME, Greenwald RA, Golub LM. Potential of tetracyclines to modify cartilage breakdown in osteoarthritis. Curr Opin Rheumatol. 1996;8:238–47.CrossRefPubMedGoogle Scholar
- 71.Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562–73.CrossRefPubMedGoogle Scholar
- 72.Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, et al. Zinc reduces collagen degradation in demineralized human dentin explants. J Dent. 2011;39:148–53.CrossRefPubMedGoogle Scholar
- 73.Sun J, Petersen EJ, Watson SS, Sims CM, Kassman A, Frukhtbeyn S, et al. Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomater. 2017;53:585–97.CrossRefPubMedGoogle Scholar
- 74.Gutierrez MF, Malaquias P, Matos TP, Szesz A, Souza S, Bermudez J, et al. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles. Dent Mater. 2017;33:309–20.CrossRefPubMedGoogle Scholar
- 75.Torres-Mendez F, Martinez-Castanon GA, Torres-Gallegos I, Zavala-Alonso NV, Patino-Marin N, Nino-Martinez N, et al. Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel. Dent Mater J. 2017;36(3):266–74.CrossRefPubMedGoogle Scholar
- 76.Barcellos DC, Fonseca BM, Pucci CR, Cavalcanti B, Persici Ede S, Goncalves SE. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties. Dent Mater. 2016;32:940–50.CrossRefPubMedGoogle Scholar
- 77.Sauro S, Osorio R, Watson TF, Toledano M. Influence of phosphoproteins' biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems. Dent Mater. 2015;31:759–77.CrossRefPubMedGoogle Scholar
- 78.Alkatheeri MS, Palasuk J, Eckert GJ, Platt JA, Bottino MC. Halloysite nanotube incorporation into adhesive systems-effect on bond strength to human dentin. Clin Oral Investig. 2015;19:1905–12.CrossRefPubMedGoogle Scholar
- 79.Kasraei S, Yarmohammadi E, Ghazizadeh MV. Microshear bond strength of OptiBond All-in-One self-adhesive agent to Er:YAG laser treated enamel after thermocycling and water storage. J Lasers Med Sci. 2016;7:152–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 80.Abreu JL, Prado M, Simao RA, Silva EM, Dias KR. Effect of non-thermal argon plasma on bond strength of a self-etch adhesive system to NaOCl-treated dentin. Braz Dent J. 2016;27:446–51.CrossRefPubMedGoogle Scholar
- 81.Han GJ, Kim JH, Chung SN, Chun BH, Kim CK, Seo DG, et al. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin. Eur J Oral Sci. 2014;122:417–23.CrossRefPubMedGoogle Scholar
- 82.Curylofo FA, Messias DC, Silva-Sousa YT, Souza-Gabriel AE. Bond strength of restorative material to dentin submitted to bleaching and Er:YAG laser post-treatment. Photomed Laser Surg. 2014;32:495–9.CrossRefPubMedGoogle Scholar
- 83.Malekipour MR, Shirani F, Ebrahimi M. The effect of washing water temperature on resin-dentin micro-shear bond strength. Dent Res J (Isfahan). 2016;13:174–80.CrossRefGoogle Scholar
- 84.Munoz MA, Sezinando A, Luque-Martinez I, Szesz AL, Reis A, Loguercio AD, et al. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives. J Dent. 2014;42:595–602.CrossRefPubMedGoogle Scholar
- 85.Perdigao J, Munoz MA, Sezinando A, Luque-Martinez IV, Staichak R, Reis A, et al. Immediate adhesive properties to dentin and enamel of a universal adhesive associated with a hydrophobic resin coat. Oper Dent. 2014;39:489–99.CrossRefPubMedGoogle Scholar
- 86.Sezinando A, Luque-Martinez I, Munoz MA, Reis A, Loguercio AD, Perdigao J. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives. Dent Mater. 2015;31:e236–46.CrossRefPubMedGoogle Scholar
- 87.Oliveira CA, Franca FM, Basting RT, Turssi CP, do Amaral FL. Effect of double coating of one-step self-etching adhesive on micromorphology and microtensile bond strength to sound vs demineralized dentin. J Contemp Dent Pract. 2014;15:385–91.CrossRefPubMedGoogle Scholar
- 88.Lohbauer U, Wagner A, Belli R, Stoetzel C, Hilpert A, Kurland HD, et al. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater. 2010;6:4539–46.CrossRefPubMedGoogle Scholar
- 89.Cadek M, Coleman JN, Barron K, Hedicke K, Blau WJ. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett. 2002;81:5123–5.CrossRefGoogle Scholar
- 90.Bottino MC, Batarseh G, Palasuk J, Alkatheeri MS, Windsor LJ, Platt JA. Nanotube-modified dentin adhesive--physicochemical and dentin bonding characterizations. Dent Mater. 2013;29:1158–65.CrossRefPubMedGoogle Scholar
- 91.Feitosa SA, Munchow EA, Al-Zain AO, Kamocki K, Platt JA, Bottino MC. Synthesis and characterization of novel halloysite-incorporated adhesive resins. J Dent. 2015;43:1316–22.CrossRefPubMedGoogle Scholar
- 92.Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation. J Endod. 2012;38:1227–32.CrossRefPubMedGoogle Scholar
- 93.Kawai K, Torii M, Tsuchitani Y. Inhibition of water insoluble glucan formation by eluate from amalgams [in Japanese]. Shika Zairyo Kikai. 1989;8:890–5.PubMedGoogle Scholar
- 94.• Liu Y, Tjaderhane L, Breschi L, Mazzoni A, Li N, Mao J, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res. 2011;90:953–68. This article brings an overview regarding limitations in bonding to dentin and the possible strategies available to prevent bond degradation, which may include increasing conversion and esterase resistance of hydrophilic monomers, using MMP inhibitors or collagen crosslinkers, using the ethanol wet-bonding technique or biomimetic remineralization. CrossRefPubMedPubMedCentralGoogle Scholar
- 95.Donmez N, Belli S, Pashley DH, Tay FR. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives. J Dent Res. 2005;84:355–9.CrossRefPubMedGoogle Scholar
- 96.Shinohara MS, De Goes MF, Schneider LF, Ferracane JL, Pereira PN, Di Hipolito V, et al. Fluoride-containing adhesive: durability on dentin bonding. Dent Mater. 2009;25:1383–91.CrossRefPubMedGoogle Scholar
- 97.Leitune VC, Collares FM, Trommer RM, Andrioli DG, Bergmann CP, Samuel SM. The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J Dent. 2013;41:321–7.CrossRefPubMedGoogle Scholar
- 98.Wagner A, Belli R, Stotzel C, Hilpert A, Muller FA, Lohbauer U. Biomimetically- and hydrothermally-grown HAp nanoparticles as reinforcing fillers for dental adhesives. J Adhes Dent. 2013;15:413–22.PubMedGoogle Scholar