Advertisement

Current Oral Health Reports

, Volume 4, Issue 1, pp 44–50 | Cite as

Functional Salivary Gland Regenerative Therapy for Oral Health

  • Miho Ogawa
  • Takashi TsujiEmail author
Orodental Regenerative Medicine (M Bartold, Section Editor)
  • 63 Downloads
Part of the following topical collections:
  1. Topical Collection on Orodental Regenerative Medicine

Abstract

Salivary glands maintain oral health and homeostasis via functional interactions with many organs, including the teeth and the tongue. Dysfunction of salivary glands causes many problems, such as dental caries, bacterial infection, and swallowing dysfunction. Current regenerative therapy for salivary gland tissue repair and whole salivary gland replacement is currently a novel therapeutic concept that may result in full recovery of salivary gland function. The salivary glands arise from reciprocal epithelial and mesenchymal interactions. We developed a novel three-dimensional cell manipulation method that can reproduce organogenesis via the epithelial-mesenchymal interaction. The bioengineered salivary glands develop correct structure and successfully secrete saliva into the oral cavity via reestablishment of the afferent-efferent neural network. The bioengineered salivary glands also improve dry mouth symptoms, such as bacterial infections and swallowing dysfunction. This review summarizes recent findings and technological advances in salivary gland regenerative therapy.

Keywords

Salivary gland regeneration Bioengineered salivary gland germ Epithelial-mesenchymal interaction Saliva Organ germ method 

Notes

Acknowledgements

This work was partially supported by a Grant-in-Aid for KIBAN (A) from the Ministry of Education, Culture, Sports and Technology (no. 25242041). This work was also partially supported by Organ Technologies Inc.

Compliance with Ethical Standards

Conflict of Interest

M. Ogawa declares that he has no conflict of interest. T. Tsuji reports a Grant-in-Aid for KIBAN (A) from the Ministry of Education, Culture, Sports, and Technology (no. 25242041) and a grant from Organ Technologies Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Edgar M, Dawes C, Mullane OD. Saliva and oral health 3rd edn. UK: British Dental Association; 2004.Google Scholar
  2. 2.
    Tucker AS, Miletich I. Salivary glands; development, adaptations, and disease. London: Karger; 2010.CrossRefGoogle Scholar
  3. 3.
    Avery JK. Oral development and histology. New York: Thieme Press; 2002. p. 292–330.Google Scholar
  4. 4.
    Saleh J, Figueiredo MA, Cherubini K, Salum FG. Salivary hypofunction: an update on aetiology, diagnosis and therapeutics. Arch Oral Biol. 2015;60(2):242–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME. Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys. 2010;78:983–91.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ship JA, Pillemer SR, Baum BJ. Xerostomia and the geriatric patient. J Am Geriatr Soc. 2002;50:535–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Fox PC. Salivary enhancement therapies. Caries Res. 2004;38:241–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Atkinson JC, Grisius M, Massey W. Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin N Am. 2005;49:309–26.CrossRefPubMedGoogle Scholar
  9. 9.
    Hayashi Y, Arakaki R, Ishimaru N. Salivary gland and autoimmunity. J Med Investig. 2009;56:185–91.CrossRefGoogle Scholar
  10. 10.
    Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol. 2004;558:561–75.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kagami H, Wang S, Hai B. Restoring the function of salivary glands. Oral Dis. 2008;14:15–24.PubMedGoogle Scholar
  12. 12.
    Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Segers VFM, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.CrossRefPubMedGoogle Scholar
  14. 14.
    •• Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3:e2063. This manuscript shows that adult stem cells derived from salivary glands can be cultured in vitro while maintaining the regenerating ability and saliva levels can be recovered by transplanting these cells to irradiated glands.Google Scholar
  15. 15.
    Feng J, Van der Zwaag M, Stokman MA, Van Os R, Coppes RP. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92:466–71.CrossRefPubMedGoogle Scholar
  16. 16.
    O’Connell AC, Baccaglini L, Fox PC, O’Connell BC, Kenshalo D, Oweisy H, Hoque AT, Sun D, Herscher LL, Braddon VR, Delporte C, Baum BJ. Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther. 1999;6(6):505–13.CrossRefPubMedGoogle Scholar
  17. 17.
    • Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods. 2007;4(3):227–30. This report is the first to develop the method for reconstruction of bioengineered organ germs. By using this method, functional regeneration of teeth and hair follicles became possible.Google Scholar
  18. 18.
    Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009;106(32):13475–80.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T. Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One. 2011;6(7):e21531.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Toyoshima KE, Asakawa K, Ishibashi N, Toki H, Ogawa M, Hasegawa T, Irié T, Tachikawa T, Sato A, Takeda A, Tsuji T. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nat Commun. 2012;3:784.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hirayama M, Ogawa M, Oshima M, Sekine Y, Ishida K, Yamashita K, Ikeda K, Shimmura S, Kawakita T, Tsubota K, Tsuji T. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2497.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Jiménez-Rojo L, Granchi Z, Graf D, Mitsiadis TA. Stem cell fate determination during development and regeneration of ectodermal organs. Front Physiol. 2012;3:107.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol. 2003;262(2):195–205.CrossRefPubMedGoogle Scholar
  24. 24.
    Jaskoll T, Melnick M. Embryonic salivary gland branching morphogenesis. Madame Curie. 2004;13–14Google Scholar
  25. 25.
    Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1(1):69–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Sakai T. Epithelial branching morphogenesis of salivary gland: exploration of new functional regulators. J Med Investig. 2009;56(Suppl):234–8.CrossRefGoogle Scholar
  27. 27.
    Hsu JC, Yamada KM. Salivary gland branching morphogenesis—recent progress and future opportunities. Int J Oral Sci. 2010;2(3):117–26.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Harunaga J, Hsu JC, Yamada KM. Dynamics of salivary gland morphogenesis. J Dent Res. 2011;90(9):1070–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Denny PC, Denny PA. Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec. 1999;254:408–17.CrossRefPubMedGoogle Scholar
  30. 30.
    Man YG, Ball WD, Marchetti L, Hand AR. Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec. 2001;263(2):202–14.CrossRefPubMedGoogle Scholar
  31. 31.
    Ihrler S, Zietz C, Sendelhofert A, Lang S, Blasenbreu-Vogt S, Löhrs U. A morphogenetic concept of salivary duct regeneration and metaplasia. Virchows Arch. 2002;440(5):519–26.CrossRefPubMedGoogle Scholar
  32. 32.
    Lombaert IM, Hoffman MP. Stem cells in salivary gland development and regeneration. Stem cells in craniofacial development and regeneration. Hoboken: Wiley-Blackwell; 2013. p. 271–84.CrossRefGoogle Scholar
  33. 33.
    Takahashi S, Schoch E, Walker NI. Origin of acinar cell regeneration after atrophy of the rat parotid induced by duct obstruction. Int J Exp Pathol. 1998;79:293–301.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hisatomi Y, Okumura K, Nakamura K, Matsumoto S, Satoh A, Nagano K, Yamamoto T, Endo F. Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology. 2004;39(3):667–75.CrossRefPubMedGoogle Scholar
  35. 35.
    Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y, Terada K, Sugiyama T, Umeyama K, Matsumoto K, Yamamoto T, Endo F. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology. 2003;38(1):104–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Okumura K, Shinohara M, Endo F. Capability of tissue stem cells to organize into salivary rudiments. Stem Cells Int. 2012;2012:502136.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nanduri LS, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol. 2011;99(3):367–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Sumita Y, et al. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol. 2011;43:80–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Rotter N, Oder J, Schlenke P. Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 2008;17(3):509–18.CrossRefPubMedGoogle Scholar
  40. 40.
    Denny PC, Denny PA. Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec. 1999;254(3):408–17.CrossRefPubMedGoogle Scholar
  41. 41.
    Horie K, Kagami H, Hiramatsu Y, Hata K, Shigetomi T, Ueda M. Selected salivary-gland cell culture and the effects of isoproterenol, vasoactive intestinal polypeptide and substance P. Arch Oral Biol. 1996;41(3):243–52.CrossRefPubMedGoogle Scholar
  42. 42.
    Sugito T, Kagami H, Hata K, Nishiguchi H, Ueda M. Transplantation of cultured salivary gland cells into an atrophic salivary gland. Cell Transplant. 2004;13(6):691–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Bücheler M, Wirz C, Schütz A, Bootz F. Tissue engineering of human salivary gland organoids. Acta Otolaryngol. 2002;122(5):541–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Tran SD, Wang J, Bandyopadhyay BC, Redman RS, Dutra A, Pak E, Swaim WD, Gerstenhaber JA, Bryant JM, Zheng C, Goldsmith CM, Kok MR, Wellner RB, Baum BJ. Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue Eng. 2005;11(1–2):172–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Sun T, Zhu J, Yang X, Wang S. Growth of miniature pig parotid cells on biomaterials in vitro. Arch Oral Biol. 2006;51(5):351–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun. 2006;340(2):544–52.CrossRefPubMedGoogle Scholar
  47. 47.
    •• Delporte C, O’Connell BC, He X, Lancaster HE, O’Connell AC, Agre P, Baum BJ. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A. 1997;94(7):3268–73. This manuscript shows that by it is possible to introduce AQP1 into the salivary gland using adenovirus and restore the amount of saliva.Google Scholar
  48. 48.
    Palomino A, Hernández-Bernal F, Haedo W, Franco S, Más JA, Fernández JA, Soto G, Alonso A, González T, López-Saura P. A multicenter, randomized, double-blind clinical trial examining the effect of oral human recombinant epidermal growth factor on the healing of duodenal ulcers. Scand J Gastroenterol. 2000;35(10):1016–22.CrossRefPubMedGoogle Scholar
  49. 49.
    Sonis ST, Peterson RL, Edwards LJ, Lucey CA, Wang L, Mason L, Login G, Ymamkawa M, Moses G, Bouchard P, Hayes LL, Bedrosian C, Dorner AJ. Defining mechanisms of action of interleukin-11 on the progression of radiation-induced oral mucositis in hamsters. Oral Oncol. 2000;36(4):373–81.CrossRefPubMedGoogle Scholar
  50. 50.
    Dörr W, Noack R, Spekl K, Farrell CL. Modification of oral mucositis by keratinocyte growth factor: single radiation exposure. Int J Radiat Biol. 2001;77(3):341–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Baum BJ, Voutetakis A, Wang J. Salivary glands: novel target sites for gene therapeutics. Trends Mol Med. 2004;10(12):585–90.CrossRefPubMedGoogle Scholar
  52. 52.
    Kagami H, O’Connell BC, Baum BJ. Evidence for the systemic delivery of a transgene product from salivary glands. Hum Gene Ther. 1996;7(17):2177–84.CrossRefPubMedGoogle Scholar
  53. 53.
    He X, Goldsmith CM, Marmary Y, Wellner RB, Parlow AF, Nieman LK, Baum BJ. Systemic action of human growth hormone following adenovirus-mediated gene transfer to rat submandibular glands. Gene Ther. 1998;5(4):537–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Voutetakis A, Bossis I, Kok MR, Zhang W, Wang J, Cotrim AP, Zheng C, Chiorini JA, Nieman LK, Baum BJ. Salivary glands as a potential gene transfer target for gene therapeutics of some monogenetic endocrine disorders. J Endocrinol. 2005;185(3):363–72.CrossRefPubMedGoogle Scholar
  55. 55.
    Wei C, Larsen M, Hoffman MP, Yamada KM. Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng. 2007;13(4):721–35.CrossRefPubMedGoogle Scholar
  56. 56.
    Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, Nakajima K, Hirayama M, Tachikawa T, Tsuji T. Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2498.Google Scholar
  57. 57.
    Proctor GB, Carpenter GH. Salivary secretion: mechanism and neural regulation. Monogr Oral Sci. 2014;24:14–29.CrossRefPubMedGoogle Scholar
  58. 58.
    Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11:216–29.CrossRefPubMedGoogle Scholar
  59. 59.
    Froehlich DA, Pangborn RM, Whitaker JR. The effect of oral stimulation on human parotid salivary flow rate and alpha-amylase secretion. Physiol Behav. 1987;41(3):209–17.CrossRefPubMedGoogle Scholar
  60. 60.
    Sasano T, Satoh-Kuriwada S, Shoji N, Sekine-Hayakawa Y, Kawai M, Uneyama H. Application of umami taste stimulation to remedy hypogeusia based on reflex salivation. Biol Pharm Bull. 2010;33(11):1791–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Ogawa M, Yamashita K, Niikura M, Nakajima K, Toyoshima KE, Oshima M, Tsuji T. Saliva secretion in engrafted mouse bioengineered salivary glands using taste stimulation. J Prosthodont Res. 2014;58(1):17–25.Google Scholar
  62. 62.
    Lamy E, Graca G, Costa GD, Franco C, Silva FC, Baptista ES, et al. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci. 2010;8:65.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962;237:1555–62.PubMedGoogle Scholar
  64. 64.
    Sreebny LM, Schwartz SS. A reference guide to drugs and dry mouth—2nd edition. Gerodontology. 1997;14(1):33–47.CrossRefPubMedGoogle Scholar
  65. 65.
    Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497–505.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12(4):243–52.CrossRefPubMedGoogle Scholar
  67. 67.
    Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2010;19(4):469–80.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Organ Technologies IncTokyoJapan
  2. 2.RIKEN Center for Developmental BiologyKobeJapan

Personalised recommendations