Advertisement

Current Oral Health Reports

, Volume 4, Issue 1, pp 14–21 | Cite as

Beyond Cell Division: the Ecological Roles of Autolysins in Oral Biofilm Communities

  • Nyssa CullinEmail author
  • Justin Merritt
  • Jens KrethEmail author
Microbiology (M Klein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microbiology

Abstract

Purpose of Review

The goal of this review is to address the complicated nature of autolysins found among oral bacteria and the roles they play within the oral biofilm. The various functions of autolysins are discussed, as well as the regulation of autolysins and overall contribution to biofilms and the oral environment.

Recent Findings

With their many functions, bacterial autolysins can be understood as contributing to both cell physiology and population dynamics within the oral environment. Cell division, peptidoglycan turnover/remodeling, fratricide, and programmed cell death are all influenced, if not controlled, by autolysins. The release of nutrients and DNA as functional byproducts of lysins can alter the biofilm by affecting the growth and overall genetic makeup of the diverse bacteria.

Summary

Autolysins and their various functions contribute to biofilm formation, horizontal gene transfer, and the overall health of the oral cavity.

Keywords

Oral bacteria Autolysin Peptidoglycan hydrolase Biofilms 

Notes

Acknowledgements

This work was supported by an NIH-NIDCR grant DE021726 to J. K. and NIH-NIDCR grants DE018893 and DE022083 to J. M.

Compliance with Ethical Standards

Conflict of Interest

Nyssa Cullin, Justin Merritt, and Jens Kreth declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi: 10.1128/JB.00542-10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. Adv Appl Microbiol. 2014;87:43–110. doi: 10.1016/B978-0-12-800261-2.00002-5.CrossRefPubMedGoogle Scholar
  3. 3.
    Sbordone L, Bortolaia C. Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin Oral Inv. 2003;7(4):181–8. doi: 10.1007/s00784-003-0236-1.CrossRefGoogle Scholar
  4. 4.
    Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer Jr RJ. Communication among oral bacteria. Microbiol Mol Biol Rev: MMBR. 2002;66(3):486–505. table of contentsCrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. J Dent Res. 2009;88(11):982–90. doi: 10.1177/0022034509346811.CrossRefPubMedGoogle Scholar
  6. 6.
    Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol. 2011;19(9):449–55. doi: 10.1016/j.tim.2011.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kreth J, Vu H, Zhang Y, Herzberg MC. Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. J Bacteriol. 2009;191(20):6281–91. doi: 10.1128/JB.00906-09.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Frank KL, Patel R. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun. 2007;75(10):4728–42. doi: 10.1128/IAI.00640-07.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR, 3rd et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 2012;8(4):e1002623. doi: 10.1371/journal.ppat.1002623.
  10. 10.
    Das T, Sehar S, Manefield M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep. 2013;5(6):778–86. doi: 10.1111/1758-2229.12085.CrossRefPubMedGoogle Scholar
  11. 11.
    Dominiak DM, Nielsen JL, Nielsen PH. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ Microbiol. 2011;13(3):710–21. doi: 10.1111/j.1462-2920.2010.02375.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487. doi: 10.1126/science.295.5559.1487.CrossRefPubMedGoogle Scholar
  13. 13.
    Fischetti VA. Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol. 2008;11(5):393–400. doi: 10.1016/j.mib.2008.09.012.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev. 2008;32(2):259–86. doi: 10.1111/j.1574-6976.2007.00099.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Berg KH, Biornstad TJ, Johnsborg O, Havarstein LS. Properties and biological role of streptococcal fratricins. Appl Environ Microbiol. 2012;78(10):3515–22. doi: 10.1128/AEM.00098-12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Layec S, Decaris B, Leblond-Bourget N. Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. Res Microbiol 2008;159(7–8):507–515. doi: 10.1016/j.resmic.2008.06.008.
  17. 17.
    Liu Y, Burne RA. The major autolysin of Streptococcus gordonii is subject to complex regulation and modulates stress tolerance, biofilm formation, and extracellular-DNA release. J Bacteriol. 2011;193(11):2826–37. doi: 10.1128/JB.00056-11.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Navarre WW, Schneewind O. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Molec Biol Rev. 1999;63(1):174–229.Google Scholar
  19. 19.
    Rico-Lastres P, Diez-Martinez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, et al. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci Reports. 2015;5:16198. doi: 10.1038/srep16198.CrossRefGoogle Scholar
  20. 20.
    Garcia P, Gonzalez MP, Garcia E, Lopez R, Garcia JL. LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol. 1999;31(4):1275–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Shibata Y, Kawada M, Nakano Y, Toyoshima K, Yamashita Y. Identification and characterization of an autolysin-encoding gene of Streptococcus mutans. Infect Immun. 2005;73(6):3512–20. doi: 10.1128/IAI.73.6.3512-3520.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yoshimura G, Komatsuzawa H, Hayashi I, Fujiwara T, Yamada S, Nakano Y, et al. Identification and molecular characterization of an N-acetylmuraminidase, Aml, involved in Streptococcus mutans cell separation. Microbiol Immunol. 2006;50(9):729–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Ahn SJ, Burne RA. The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. J Bacteriol. 2006;188(19):6877–88. doi: 10.1128/JB.00536-06.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yamada A, Tamura H, Kato H. Identification and characterization of an autolysin gene, atlg, from Streptococcus sobrinus. FEMS Microbiol Lett. 2009;291(1):17–23. doi: 10.1111/j.1574-6968.2008.01426.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Tamura H, Yamada A, Yoshida Y, Kato H. Identification and characterization of an autolysin gene, atlh, from Streptococcus downei. Curr Microbiol. 2009;58(5):432–7. doi: 10.1007/s00284-008-9336-0.CrossRefPubMedGoogle Scholar
  26. 26.
    •• Berg KH, Ohnstad HS, Havarstein LS. LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. J Bacteriol. 2012;194(3):627–35. doi: 10.1128/JB.06273-11. This manuscript presents the first description of the competence-associated murein hydrolase LytF in streptococcal species that lack a pneumococcal-like CbpD.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu Y, Kreth J. Role of LytF and AtlS in eDNA release by Streptococcus gordonii. PLoS One. 2013;8(4):e62339. doi: 10.1371/journal.pone.0062339.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Johnson JW, Fisher JF, Mobashery S. Bacterial cell-wall recycling. Ann N Y Acad Sci. 2013;1277:54–75. doi: 10.1111/j.1749-6632.2012.06813.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Dworkin J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu Rev Microbiol. 2014;68:137–54. doi: 10.1146/annurev-micro-091213-112844.CrossRefPubMedGoogle Scholar
  30. 30.
    • Maestro B, Novakova L, Hesek D, Lee M, Leyva E, Mobashery S, et al. Recognition of peptidoglycan and beta-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. FEBS Lett. 2011;585(2):357–63. doi: 10.1016/j.febslet.2010.12.016. This manuscript presents the first evidence for a serine/threonine protein kinase with PASTA domains binding synthetic peptidoglycan units. This would indicate muropeptides may be involved in cell signaling.CrossRefPubMedGoogle Scholar
  31. 31.
    Barthe P, Mukamolova GV, Roumestand C, Cohen-Gonsaud M. The structure of PknB extracellular PASTA domain from mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Structure. 2010;18(5):606–15. doi: 10.1016/j.str.2010.02.013.CrossRefPubMedGoogle Scholar
  32. 32.
    Shah IM, Laaberki MH, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 2008;135(3):486–96. doi: 10.1016/j.cell.2008.08.039.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Havarstein LS, Martin B, Johnsborg O, Granadel C, Claverys JP. New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol. 2006;59(4):1297–307. doi: 10.1111/j.1365-2958.2005.05021.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Johnsborg O, Havarstein LS. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev. 2009;33(3):627–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Claverys JP, Martin B, Havarstein LS. Competence-induced fratricide in streptococci. Mol Microbiol. 2007;64(6):1423–33. doi: 10.1111/j.1365-2958.2007.05757.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT. Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol. 1991;11(10):5113–24.Google Scholar
  37. 37.
    Lu JZ, Fujiwara T, Komatsuzawa H, Sugai M, Sakon J. Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J Biol Chem. 2006;281(1):549–58. doi: 10.1074/jbc.M509691200.
  38. 38.
    Garcia P, Paz Gonzalez M, Garcia E, Garcia JL, Lopez R. The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol Microbiol. 1999;33(1):128–38.CrossRefPubMedGoogle Scholar
  39. 39.
    Eldholm V, Johnsborg O, Straume D, Ohnstad HS, Berg KH, Hermoso JA, et al. Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol Microbiol. 2010;76(4):905–17. doi: 10.1111/j.1365-2958.2010.07143.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Garcia E, Garcia JL, Ronda C, Garcia P, Lopez R. Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Mol Gen Genet. 1985;201(2):225–30.CrossRefPubMedGoogle Scholar
  41. 41.
    Mellroth P, Sandalova T, Kikhney A, Vilaplana F, Hesek D, Lee M, et al. Structural and functional insights into peptidoglycan access for the lytic amidase LytA of Streptococcus pneumoniae. MBio. 2014;5(1):e01120–13. doi: 10.1128/mBio.01120-13.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tomasz A, Moreillon P, Pozzi G. Insertional inactivation of the major autolysin gene of Streptococcus pneumoniae. J Bacteriol. 1988;170(12):5931–4.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Havarstein LS. Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology. 2009;155(Pt 7):2223–34. doi: 10.1099/mic.0.026328-0.CrossRefPubMedGoogle Scholar
  44. 44.
    Kausmally L, Johnsborg O, Lunde M, Knutsen E, Havarstein LS. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J Bacteriol. 2005;187(13):4338–45. doi: 10.1128/JB.187.13.4338-4345.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Moscoso M, Claverys JP. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol Microbiol. 2004;54(3):783–94. doi: 10.1111/j.1365-2958.2004.04305.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Rodriguez AM, Callahan JE, Fawcett P, Ge X, Xu P, Kitten T. Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol Oral Microbiol. 2011;26(2):99–116. doi: 10.1111/j.2041-1014.2011.00606.x.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Havarstein LS, Hakenbeck R, Gaustad P. Natural competence in the genus 485 Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol. 1997;179(21):6589–94.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Johnsborg O, Eldholm V, Havarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol. 2007;158(10):767–78. doi: 10.1016/j.resmic.2007.09.004.CrossRefPubMedGoogle Scholar
  49. 49.
    Itzek A, Zheng L, Chen Z, Merritt J, Kreth J. Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J Bacteriol. 2011;193(24):6912–22. doi: 10.1128/JB.05791-11.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bayles KW. The biological role of death and lysis in biofilm development. Nat Rev. 2007;5:721–6. doi: 10.1038/nrmicro1743.Google Scholar
  51. 51.
    Hetts SW. To die or not to die: an overview of apoptosis and its role in disease. Jama. 1998;279(4):300–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Dufour D, Levesque CM. Cell death of Streptococcus mutans induced by a quorum-sensing peptide occurs via a conserved streptococcal autolysin. J Bacteriol. 2013;195(1):105–14. doi: 10.1128/JB.00926-12.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Okinaga T, Xie Z, Niu G, Qi F, Merritt J. Examination of the hdrRM regulon yields insight into the competence system of Streptococcus mutans. Mol Oral Microbiol. 2010;25(3):165–77. doi: 10.1111/j.2041-1014.2010.00574.x.CrossRefPubMedGoogle Scholar
  54. 54.
    • Ahn SJ, Rice KC, Oleas J, Bayles KW, Burne RA. The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology. 2010;156(Pt 10):3136–47. doi: 10.1099/mic.0.039586-0. The manuscript details the regulation of the LrgAB/CidAB system of S. mutans. This system, in turn, regulates autolysins involved in programmed cell death. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ahn SJ, Rice KC. Understanding the Streptococcus mutans Cid/Lrg System through CidB function. Appl Environ Microbiol. 2016; doi: 10.1128/AEM.01499-16.Google Scholar
  56. 56.
    Ahn SJ, Qu MD, Roberts E, Burne RA, Rice KC. Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC Microbiol. 2012;12:187. doi: 10.1186/1471-2180-12-187.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Senadheera DB, Cordova M, Ayala EA, de Chavez Paz LE, Singh K, Downey JS, et al. Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans. J Bacteriol. 2012;194(6):1307–16. doi: 10.1128/JB.06071-11.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Havarstein LS, Gaustad P, Nes IF, Morrison DA. Identification of the streptococcal competence-pheromone receptor. Mol Microbiol. 1996;21(4):863–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Pestova EV, Havarstein LS, Morrison DA. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol. 1996;21(4):853–62.CrossRefPubMedGoogle Scholar
  60. 60.
    Lee MS, Morrison DA. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol. 1999;181(16):5004–16.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol. 2004;51(4):1051–70.CrossRefPubMedGoogle Scholar
  62. 62.
    Rimini R, Jansson B, Feger G, Roberts TC, de Francesco M, Gozzi A, et al. 527 Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol Microbiol. 2000;36(6):1279–92.CrossRefPubMedGoogle Scholar
  63. 63.
    Vickerman MM, Iobst S, Jesionowski AM, Gill SR. Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol. 2007;189(21):7799–807. doi: 10.1128/JB.01023-07.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol. 2009;72(4):905–17. doi: 10.1111/j.1365-2958.2009.06693.x.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Dufour D, Cordova M, Cvitkovitch DG, Levesque CM. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J Bacteriol. 2011;193(23):6552–9. doi: 10.1128/JB.05968-11.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    •• Johnsborg O, Eldholm V, Bjornstad ML, Havarstein LS. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol Microbiol. 2008;69(1):245–53. doi: 10.1111/j.1365-2958.2008.06288.x. This manuscript demonstrates that S. pneumoniae with an active CbpD murein hydrolase is capable of integrating antibiotic resistance markers released from lysed cells. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Restorative DentistryOregon Health and Science UniversityPortlandUSA

Personalised recommendations