Current Oral Health Reports

, Volume 3, Issue 3, pp 254–269 | Cite as

Modifiable Risk Factors for Periodontitis and Diabetes

  • Wenche S. BorgnakkeEmail author
Systemic Diseases (M Bartold, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Systemic Diseases


This review describes the evidence published from January 2013 through March 2016 for modifiable risk factors for chronic periodontitis and diabetes mellitus. Risk factors are factors that increase the chance of developing the disease. Modifiable risk factors for both these chronic, inflammation-related diseases include the following: hyperglycemia; microbial overgrowth, infection, and inflammation (virus, poor oral hygiene, gut microbiome); overweight and obesity; metabolic syndrome; hyperlipidemia; medication; unhealthy diet (added sugar; alcohol and other non-sugary carbohydrates, fat, and meat; nutrition, minerals (including zinc), and vitamins); current tobacco smoking (including environmental tobacco smoke); sedentary lifestyle; sleep disturbances; stress, depression, anxiety, poor coping skills, and allostatic load; low health literacy; and the environment and pollution.Given the similarity between the inflammatory mechanisms underlying chronic periodontitis and diabetes mellitus, one can wonder: Could these diseases both be somewhat different manifestations of inflammatory response-based overload? Could both periodontitis and diabetes even be regarded as autoimmune diseases that are manifested due to poor biologic and psychologic coping skills in response to the micro- and macro-level stressors that cause inflammation?Any successful intervention must include more measures than clinical medical/dental care can provide and hence might benefit from active participation of all parties, first and foremost the patient, in a patient-centered, interprofessional health care (not merely disease care) collaboration for the benefit of the mutual patient.But first, it is necessary to be aware of the risk factors that can be modified to pose less risk, a goal toward which this review hopefully will be helpful.


Added sugar Hyperglycemia Hyperlipidemia Inflammation Lifestyle Oral-systemic health 


Compliance with Ethical Standards

Conflict of Interest

Wenche S. Borgnakke declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.•
    Borgnakke WS. “Non-modifiable” risk factors for periodontitis and diabetes. Curr Oral Health Rep. 2016;3(3). doi: 10.1007/s40496-016-0098-7. This report complements the current review as it describes the “non-modifiable” risk factors.
  2. 2.••
    Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(No Iss):415–45. doi: 10.1146/annurev-immunol-031210-101322. This paper is the first to describe the low-grade, chronic, systemic inflammatory state that adipose tissue causes and coins this meta-inflammation coined “metaflammation.” This observation is based on the recent realization that adipose tissue functions as an organ that expresses pro-inflammatory biomarkers such as CRP and cytokines like TNF-α and interleukins. The authors use easy-to-understand figures to illustrate the obesity related inflammatory mechanisms due to the surplus of nutrients leading to excess adipocytes and subsequent to a chronic state of unresolved inflammation.
  3. 3.
    Janket SJ, Javaheri H, Ackerson LK, Ayilavarapu S, Meurman JH. Oral infections, metabolic inflammation, genetics, and cardiometabolic diseases. J Dent Res. 2015;94(9 Suppl):119S–27. doi: 10.1177/0022034515580795.PubMedCrossRefGoogle Scholar
  4. 4.••
    Bartold PM, Van Dyke TE. Periodontitis: a host-mediated disruption of microbial homeostasis; unlearning learned concepts. Periodontol 2000. 2013;62(1):203–17. doi: 10.1111/j.1600-0757.2012.00450.x. This paper is a brilliant explanation by two giants in the field of periodontology of the development and sustainability of the viscious cycle leading to increased inflammation with increased periodontal tissue breakdown in a viscious cycle that is initiated by the microbial dysbiosis in dental plaque, but mediated by the host response rather than depending on particular periodontal microbes. While giving a nod to the initial importance of subgingival microflora in dental plaque, the authors argue that usual members of the subgingival microbiome in health (commensal) can show overgrowth as opportunistic pathogens, given the right constellation of facilitating host factors, that is, the host’s inflammatory responses are more responsible for the end result of periodontal breakdown than the identity of the periodontal microbes in the biofilm. PubMedCrossRefGoogle Scholar
  5. 5.
    Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21(3):172–83. doi: 10.1016/j.molmed.2014.11.004.PubMedCrossRefGoogle Scholar
  6. 6.
    Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol 2000. 2013;62(1):59–94. doi: 10.1111/j.1600-0757.2012.00457.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Kowall B, Holtfreter B, Völzke H, Schipf S, Mundt T, Rathmann W, et al. Pre-diabetes and well-controlled diabetes are not associated with periodontal disease: the SHIP trend study. J Clin Periodontol. 2015;42(5):422–30. doi: 10.1111/jcpe.12391.PubMedCrossRefGoogle Scholar
  8. 8.••
    Demmer RT, Holtfreter B, Desvarieux M, Jacobs Jr DR, Kerner W, Nauck M, et al. The influence of type 1 and type 2 diabetes on periodontal disease progression: prospective results from the Study of Health in Pomerania (SHIP). Diabetes Care. 2012;35(10):2036–42. doi: 10.2337/dc11-2453. This study is the first longitudinal, population based study to examine periodontitis progression over 5 years in men and women with T1D and T2D and revealed that it is the hyperglycemia (glucotoxicity) that is the offending factor in the influence of diabetes on periodontal tissue breakdown, as opposed to the etiology or type of diabetes per se. That means that only poorly controlled diabetes caused periodontitis progression, whereas periodontal health in persons with well-controlled diabetes of either type 1 or type 2 had periodontal health status equivalent to that of persons free of diabetes. PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Garcia D, Tarima S, Okunseri C. Periodontitis and glycemic control in diabetes: NHANES 2009 to 2012. J Periodontol. 2015;86(4):499–506. doi: 10.1902/jop.2014.140364.PubMedCrossRefGoogle Scholar
  10. 10.
    Schara R, Skaleric E, Seme K, Skaleric U. Prevalence of periodontal pathogens and metabolic control of type 1 diabetes patients. J Int Acad Periodontol. 2013;15(1):29–34.PubMedGoogle Scholar
  11. 11.
    Morita I, Inagaki K, Nakamura F, Noguchi T, Matsubara T, Yoshii S, et al. Relationship between periodontal status and levels of glycated hemoglobin. J Dent Res. 2012;91(2):161–6. doi: 10.1177/0022034511431583.PubMedCrossRefGoogle Scholar
  12. 12.
    Chiu SY, Lai H, Yen AM, Fann JC, Chen LS, Chen HH. Temporal sequence of the bidirectional relationship between hyperglycemia and periodontal disease: a community-based study of 5,885 Taiwanese aged 35–44 years (KCIS No. 32). Acta Diabetol. 2015;52(1):123–31. doi: 10.1007/s00592-014-0612-0.PubMedCrossRefGoogle Scholar
  13. 13.
    Groves DW, Krantz MJ, Hokanson JE, Johnson LR, Eckel RH, Kinney GL, et al. Comparison of frequency and duration of periodontal disease with progression of coronary artery calcium in patients with and without type 1 diabetes mellitus. Am J Cardiol. 2015;116(6):833–7. doi: 10.1016/j.amjcard.2015.06.006.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sung J, Lee K, Song YM, Lee M, Kim J. Genetic and baseline metabolic factors for incident diabetes and HbA(1c) at follow-up: the Healthy Twin Study. Diabetes Metab Res Rev. 2015;31(4):376–84. doi: 10.1002/dmrr.2619.PubMedCrossRefGoogle Scholar
  15. 15.
    Anjana RM, Shanthi Rani CS, Deepa M, Pradeepa R, Sudha V, Divya Nair H, et al. Incidence of diabetes and prediabetes and predictors of progression among Asian Indians: 10-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES). Diabetes Care. 2015;38(8):1441–8. doi: 10.2337/dc14-2814.PubMedCrossRefGoogle Scholar
  16. 16.
    Gumus P, Ozcaka O, Ceyhan-Ozturk B, Akcali A, Lappin DF, Buduneli N. Evaluation of biochemical parameters and local and systemic levels of osteoactive and b-cell stimulatory factors in gestational diabetes in the presence or absence of gingivitis. J Periodontol. 2015;86(3):387–97. doi: 10.1902/jop.2014.140444.PubMedCrossRefGoogle Scholar
  17. 17.
    Bullon P, Jaramillo R, Santos-Garcia R, Rios-Santos V, Ramirez M, Fernandez-Palacin A, et al. Relation of periodontitis and metabolic syndrome with gestational glucose metabolism disorder. J Periodontol. 2014;85(2):e1–8. doi: 10.1902/jop.2013.130319.PubMedCrossRefGoogle Scholar
  18. 18.
    Xie Y, Xiong X, Elkind-Hirsch KE, Pridjian G, Maney P, Delarosa RL, et al. Prepregnancy obesity and periodontitis among pregnant females with and without gestational diabetes mellitus. J Periodontol. 2014;85(7):890–8. doi: 10.1902/jop.2013.130502.PubMedCrossRefGoogle Scholar
  19. 19.
    Esteves Lima RP, Cyrino RM, de Carvalho DB, Oliveira da Silveira J, Martins CC, Miranda Cota LO. Association between periodontitis and gestational diabetes mellitus: systematic review and meta-analysis. J Periodontol. 2016;87(1):48–57. doi: 10.1902/jop.2015.150311.PubMedCrossRefGoogle Scholar
  20. 20.
    Lekva T, Norwitz ER, Aukrust P, Ueland T. Impact of systemic inflammation on the progression of gestational diabetes mellitus. Curr Diab Rep. 2016;16(4):26. doi: 10.1007/s11892-016-0715-9.PubMedCrossRefGoogle Scholar
  21. 21.••
    Kim C. Maternal outcomes and follow-up after gestational diabetes mellitus. Diabet Med. 2014;31(3):292–301. doi: 10.1111/dme.12382. Dr. Kim provides an excellent overview of development of gestational diabetes an post-partum follow-up. She points to pregnancy as a strong stressor for the mother with hormone production in the placenta and the fetus that affect glucose levels during pregnancy. Dr. Kim further describes the highly increased risk for GDM in a subsequent pregnancy (41%) as well as the incident overt T2D, while pointing out that the stress of pregnancy may bring out pre-conception preDM as well as the increased chance of identifying manifest diabetes due to the routine diabetes screening during pregnancy. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    de Moura-Grec PG, Yamashita JM, Marsicano JA, Ceneviva R, de Souza Leite CV, de Brito GB, et al. Impact of bariatric surgery on oral health conditions: 6-months cohort study. Int Dent J. 2014;64(3):144–9. doi: 10.1111/idj.12090.PubMedCrossRefGoogle Scholar
  23. 23.
    Cardozo DD, Hilgert JB, Hashizume LN, Stein AT, Souto KE, Meinhardt NG, et al. Impact of bariatric surgery on the oral health of patients with morbid obesity. Obes Surg. 2014;24(10):1812–6. doi: 10.1007/s11695-014-1364-1.PubMedCrossRefGoogle Scholar
  24. 24.
    Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000. 2015;69(1):18–27. doi: 10.1111/prd.12087.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.•
    Lopez R, Hujoel P, Belibasakis GN. On putative periodontal pathogens: an epidemiological perspective. Virulence. 2015;6(3):249–57. doi: 10.1080/21505594.2015.1014266. The authors describe various potential causal mechanisms, but clearly point out that there are no epidemiologic studies that are prospective cohort studies with valid absence of periodontitis at baseline to demonstrate that any particular periodontal microbe causes periodontitis. PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe. 2014;15(6):768–78. doi: 10.1016/j.chom.2014.05.012.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23(No Iss #):141–7. doi: 10.1016/j.mib.2014.11.013.
  28. 28.
    Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44. doi: 10.1038/nri3785.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Crump KE, Sahingur SE. Microbial nucleic acid sensing in oral and systemic diseases. J Dent Res. 2016;95(1):17–25. doi: 10.1177/0022034515609062.PubMedCrossRefGoogle Scholar
  30. 30.
    Pink C, Kocher T, Meisel P, Dorr M, Markus MR, Jablonowski L, et al. Longitudinal effects of systemic inflammation markers on periodontitis. J Clin Periodontol. 2015;42(11):988–97. doi: 10.1111/jcpe.12473.PubMedCrossRefGoogle Scholar
  31. 31.•
    Borgnakke WS, Ylöstalo PV, Taylor GW, Genco RJ. Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence. J Clin Periodontol. 2013;40(Suppl 14):S135-52. doi: 10.1111/jcpe.12080. This is the only systematic review of its kind and demonstrates that all 16 papers reporting on 17 studies in which temporality could be determined suggest that periodontal infection leads to elevated blood glucose levels and thus can contribute to development or worsening of diabetes and its complications. The results are summarized in a webcast freely accessible at
  32. 32.
    Muthu J, Muthanandam S, Mahendra J, Namasivayam A, John L, Logaranjini A. Effect of nonsurgical periodontal therapy on the glycaemic control of nondiabetic periodontitis patients: a clinical biochemical study. Oral Health Prev Dent. 2015;13(3):261–6. doi: 10.3290/j.ohpd.a32995.PubMedGoogle Scholar
  33. 33.
    Yu N, Barros SP, Zhang S, Moss KL, Phillips ST, Offenbacher S. Insulin response genes in different stages of periodontal disease. J Dent Res. 2015;94(9 Suppl):194S–200. doi: 10.1177/0022034515584384.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Borgnakke WS, Anderson PF, Shannon C, Jivanescu A. Is there a relationship between oral health and diabetic neuropathy? Curr Diab Rep. 2015;15(11):93. doi: 10.1007/s11892-015-0673-7.PubMedCrossRefGoogle Scholar
  35. 35.
    Slots J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol 2000. 2015;69(1):28–45. doi: 10.1111/prd.12085.PubMedCrossRefGoogle Scholar
  36. 36.
    Contreras A, Botero JE, Slots J. Biology and pathogenesis of cytomegalovirus in periodontal disease. Periodontol 2000. 2014;64:40–56. doi: 10.1111/j.1600-0757.2012.00448.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Petzold A, Solimena M, Knoch KP. Mechanisms of beta cell dysfunction associated with viral infection. Curr Diab Rep. 2015;15:654. doi: 10.1007/s11892-015-0654-x.CrossRefGoogle Scholar
  38. 38.•
    Zimmermann H, Zimmermann N, Hagenfeld D, Veile A, Kim TS, Becher H. Is frequency of tooth brushing a risk factor for periodontitis? A systematic review and meta-analysis. Community Dent Oral Epidemiol. 2015;43(2):116–27. doi: 10.1111/cdoe.12126. The importance of this systematic review is the revelation that there are no longitudinal studies that demonstrate whether periodontitis is linked to any particular frequency of tooth brushing. That is, only 12 cross-sectional and 2 case-control studies were identified that were designed to study the links between frequency of tooth brushing and periodontitis. Infrequent brushing was associated with severe periodontitis in the 14 studies. However, due to the study designs, the temporality could not be determined as it is unknown whether periodontitis or tooth brushing occurred first and thereby could cause the other. PubMedCrossRefGoogle Scholar
  39. 39.
    Cinar AB, Oktay I, Schou L. Relationship between oral health, diabetes management and sleep apnea. Clin Oral Investig. 2013;17(3):967–74. doi: 10.1007/s00784-012-0760-y.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, et al. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2013;36(1):166–75. doi: 10.2337/dc12-0702.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang J, Zhang Q, Chen M, Wu WZ, Wang R, Liu CJ, et al. Association between Helicobacter pylori infection and risk of periodontal diseases in Han Chinese: a case–control study. Med Sci Monit. 2016;22(No Iss):121–6. doi: 10.12659/MSM.894583.
  42. 42.
    Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159–65. doi: 10.2337/dc14-0769.PubMedCrossRefGoogle Scholar
  43. 43.
    Bajaj S, Rekwal L, Misra SP, Misra V, Yadav RK, Srivastava A. Association of Helicobacter pylori infection with type 2 diabetes. Indian J Endocrinol Metab. 2014;18(5):694–9. doi: 10.4103/2230-8210.139235.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang GH, Wu JS, Yang YC, Huang YH, Lu FH, Chang CJ. Gastric Helicobacter pylori infection associated with risk of diabetes mellitus, but not prediabetes. J Gastroenterol Hepatol. 2014;29(10):1794–9. doi: 10.1111/jgh.12617.PubMedCrossRefGoogle Scholar
  45. 45.
    Suvan JE, Petrie A, Nibali L, Darbar U, Rakmanee T, Donos N, et al. Association between overweight/obesity and increased risk of periodontitis. J Clin Periodontol. 2015;42(8):733–9. doi: 10.1111/jcpe.12421.CrossRefGoogle Scholar
  46. 46.
    Nascimento GG, Leite FR, Do LG, Peres KG, Correa MB, Demarco FF, et al. Is weight gain associated with the incidence of periodontitis? A systematic review and meta-analysis. J Clin Periodontol. 2015;42(6):495–505. doi: 10.1111/jcpe.12417.PubMedCrossRefGoogle Scholar
  47. 47.
    Keller A, Rohde JF, Raymond K, Heitmann BL. Association between periodontal disease and overweight and obesity: a systematic review. J Periodontol. 2015;86(6):766–76. doi: 10.1902/jop.2015.140589.PubMedCrossRefGoogle Scholar
  48. 48.
    Diaz-Redondo A, Giraldez-Garcia C, Carrillo L, Serrano R, Garcia-Soidan F, Artola S, et al. Modifiable risk factors associated with prediabetes in men and women: a cross-sectional analysis of the cohort study in primary health care on the evolution of patients with prediabetes (PREDAPS-Study). BMC Fam Pract. 2015;16(1):5. doi: 10.1186/s12875-014-0216-3.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Johnsson IW, Haglund B, Ahlsson F, Gustafsson J. A high birth weight is associated with increased risk of type 2 diabetes and obesity. Pediatr Obes. 2015;10(2):77–83. doi: 10.1111/ijpo.230.PubMedCrossRefGoogle Scholar
  50. 50.•
    Larsson HE, Vehik K, Haller MJ, Liu X, Akolkar B, Hagopian W, et al. Growth and risk for islet autoimmunity and progression to type 1 diabetes in early childhood: the Environmental Determinants of Diabetes in the Young Study. Diabetes. 2016. doi: 10.2337/db15-1180. The TEDDY Study is the largest project to examine the development of pancreatic islet autoimmunity and its potential subsequent progression to T1D by following 7,468 children at genetic risk forT1D in Finland, Germany, Sweden, and the US until the age of 15 years. PubMedGoogle Scholar
  51. 51.
    Goncalves TE, Zimmermann GS, Figueiredo LC, Souza Mde C, da Cruz DF, Bastos MF, et al. Local and serum levels of adipokines in patients with obesity after periodontal therapy: one-year follow-up. J Clin Periodontol. 2015;42:431–9. doi: 10.1111/jcpe.12396.PubMedCrossRefGoogle Scholar
  52. 52.
    Range H, Poitou C, Boillot A, Ciangura C, Katsahian S, Lacorte JM, et al. Orosomucoid, a new biomarker in the association between obesity and periodontitis. PLoS One. 2013;8:e57645. doi: 10.1371/journal.pone.0057645.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Iwasaki M, Sato M, Minagawa K, Manz MC, Yoshihara A, Miyazaki H. Longitudinal relationship between metabolic syndrome and periodontal disease among Japanese adults aged ≥70 years: the Niigata Study. J Periodontol. 2015;86(4):491–8. doi: 10.1902/jop.2015.140398.PubMedCrossRefGoogle Scholar
  54. 54.
    Munoz-Torres FJ, Jimenez MC, Rivas-Tumanyan S, Joshipura KJ. Associations between measures of central adiposity and periodontitis among older adults. Community Dent Oral Epidemiol. 2014;42(2):170–7. doi: 10.1111/cdoe.12069.PubMedCrossRefGoogle Scholar
  55. 55.
    Bardenheier BH, Bullard KM, Caspersen CJ, Cheng YJ, Gregg EW, Geiss LS. A novel use of structural equation models to examine factors associated with prediabetes among adults aged 50 years and older: National Health and Nutrition Examination Survey 2001–2006. Diabetes Care. 2013;36(9):2655–62. doi: 10.2337/dc12-2608.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.•
    Cutler CW, Machen RL, Jotwani R, Iacopino AM. Heightened gingival inflammation and attachment loss in type 2 diabetics with hyperlipidemia. J Periodontol. 1999;70(11):1313–21. doi: 10.1902/jop.1999.70.11.1313. This is the first study to confirm in 35 humans the results of the group’s own rodent models showing that hyperlipidemia independently of other risk factors causes dysregulation of the cellular and local cytokine response in chronic periodontitis in persons with T2D. Poorer metabolic control lead to elevated serum levels of triglycerides that in turn caused adverse effects on all clinical measures of periodontitis. PubMedCrossRefGoogle Scholar
  57. 57.
    Lee JB, Yi HY, Bae KH. The association between periodontitis and dyslipidemia based on the Fourth Korea National Health and Nutrition Examination Survey. J Clin Periodontol. 2013;40(5):437–42. doi: 10.1111/jcpe.12095.PubMedCrossRefGoogle Scholar
  58. 58.
    Kalsi DS, Chopra J, Sood A. Association of lipid profile test values, type-2 diabetes mellitus, and periodontitis. Indian J Dent. 2015;6(2):81–4. doi: 10.4103/0975-962X.157270.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.••
    Zhou X, Zhang W, Liu X, Zhang W, Li Y. Interrelationship between diabetes and periodontitis: role of hyperlipidemia. Arch Oral Biol. 2015;60(4):667–74. doi: 10.1016/j.archoralbio.2014.11.008. This is the first extensive review of the scientific literature to provide strong evidence for direct effects of hyperlipidemia on incident periodontitis and diabetes outside the inflammatory pathway. The authors propose a model to show that hyperlipidemia leads directly to increased expression of the pro-inflammatory cytokines TNF-alpha and IL-1β. Demonstrating that hyperlipidemia in itself increases the risk of periodontitis and diabetes can have far reaching consequences as hyperlipidemia might represent a new therapeutic target for prevention and management of both periodontitis and diabetes. PubMedCrossRefGoogle Scholar
  60. 60.
    Taichman LS, Inglehart MR, Giannobile WV, Braun T, Kolenic G, Van Poznak C. Periodontal health in women with early-stage postmenopausal breast cancer newly on aromatase inhibitors: a pilot study. J Periodontol. 2015;86(7):906–16. doi: 10.1902/jop.2015.140546.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Gopal S, Joseph R, Santhosh VC, Kumar VV, Joseph S, Shete AR. Prevalence of gingival overgrowth induced by antihypertensive drugs: a hospital-based study. J Indian Soc Periodontol. 2015;19(3):308–11. doi: 10.4103/0972-124X.153483.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mansi I, Frei CR, Wang CP, Mortensen EM. Statins and new-onset diabetes mellitus and diabetic complications: a retrospective cohort study of US healthy adults. J Gen Intern Med. 2015;30(11):1599–610. doi: 10.1007/s11606-015-3335-1.PubMedCrossRefGoogle Scholar
  63. 63.
    Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart. 2016;102(3):198–203. doi: 10.1136/heartjnl-2015-308055.PubMedCrossRefGoogle Scholar
  64. 64.
    Galling B, Roldan A, Nielsen RE, Nielsen J, Gerhard T, Carbon M, et al. Type 2 diabetes mellitus in youth exposed to antipsychotics: a systematic review and meta-analysis. JAMA Psychiatry. 2016;73(3):247–59. doi: 10.1001/jamapsychiatry.2015.2923.PubMedCrossRefGoogle Scholar
  65. 65.••
    Lula EC, Ribeiro CC, Hugo FN, Alves CM, Silva AA. Added sugars and periodontal disease in young adults: an analysis of NHANES III data. Am J Clin Nutr. 2014;100(4):1182–7. doi: 10.3945/ajcn.114.089656. This report is the first to analyze data from a nationally representative population sample (NHANES) relating periodontitis and other inflammation-related chronic diseases to sugar intake. Importantly, frequent sugar consumption among these 18 to 25 year olds was associated with extent of periodontal disease (probing depth 3+mm and bleeding on probing) around 2 or more teeth, but not around one tooth only, which points to a systemic, not local, effect. The detrimental effects of sugar consumption on periodontal disease was independent of BMI and other traditional risk factors.
  66. 66.
    Kato H, Taguchi Y, Tominaga K, Kimura D, Yamawaki I, Noguchi M, et al. High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts. J Periodontol J Periodontol. 2016;87(4):e44–51. doi: 10.1902/jop.2015.150474.PubMedCrossRefGoogle Scholar
  67. 67.
    Greenwood DC, Threapleton DE, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, et al. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose–response meta-analysis of prospective studies. Br J Nutr. 2014;112(5):725–34. doi: 10.1017/s0007114514001329.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang M, Yu M, Fang L, Hu RY. Association between sugar-sweetened beverages and type 2 diabetes: a meta-analysis. Journal of diabetes investigation. 2015;6(3):360–6. doi: 10.1111/jdi.12309.PubMedCrossRefGoogle Scholar
  69. 69.
    Basu S, Yoffe P, Hills N, Lustig RH. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data. PLoS One. 2013;8(2):e57873. doi: 10.1371/journal.pone.0057873.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tappy L, Le KA. Health effects of fructose and fructose-containing caloric sweeteners: where do we stand 10 years after the initial whistle blowings? Curr Diab Rep. 2015;15(8):#54). doi: 10.1007/s11892-015-0627-0.
  71. 71.
    Laverty AA, Magee L, Monteiro CA, Saxena S, Millett C. Sugar and artificially sweetened beverage consumption and adiposity changes: national longitudinal study. Int J Behav Nutr Phys Act. 2015;12:Article #137. doi: 10.1186/s12966-015-0297-y.
  72. 72.
    Malik VS, Hu FB. Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us. J Am Coll Cardiol. 2015;66(14):1615–24. doi: 10.1016/j.jacc.2015.08.025.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lomonaco R, Bril F, Portillo-Sanchez P, Ortiz-Lopez C, Orsak B, Biernacki D, et al. Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care. 2016;39(4):632–8. doi: 10.2337/dc15-1876.PubMedCrossRefGoogle Scholar
  74. 74.
    Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6. doi: 10.1038/nature13793.PubMedGoogle Scholar
  75. 75.
    Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav. 2015;152(PtB):450–5. doi: 10.1016/j.physbeh.2015.06.024.PubMedCrossRefGoogle Scholar
  76. 76.
    Sylvetsky Meni AC, Swithers SE, Rother KI. Positive association between artificially sweetened beverage consumption and incidence of diabetes. Diabetologia. 2015;58(10):2455–6. doi: 10.1007/s00125-015-3694-5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Xi B, Li S, Liu Z, Tian H, Yin X, Huai P, et al. Intake of fruit juice and incidence of type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2014;9(3):e93471. doi: 10.1371/journal.pone.0093471.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang J, Lv J, Wang W, Jiang X. Alcohol consumption and risk of periodontitis: a meta-analysis. J Clin Periodontol 2016;43(7):572–83. doi: 10.1111/jcpe.12556.
  79. 79.
    Valentine GW, Jatlow PI, Coffman M, Nadim H, Gueorguieva R, Sofuoglu M. The effects of alcohol-containing e-cigarettes on young adult smokers. Drug Alcohol Depend. 2016;159:272–6. doi: 10.1016/j.drugalcdep.2015.12.011.PubMedCrossRefGoogle Scholar
  80. 80.••
    Muraki I, Rimm EB, Willett WC, Manson JE, Hu FB, Sun Q. Potato consumption and risk of type 2 diabetes: results from three prospective cohort studies. Diabetes Care. 2016;39(3):376–84. doi: 10.2337/dc15-0547. Pooling data from 3 large longitudinal S studies among almost 200,000 health professionals with 4 million person-years, this paper shows that consumption of potatoes that mainly consist of easily digestible carbohydrates pose a significant risk for incident T2D. Whereas substituting baked, boiled, or mashed potatoes with whole grains significantly reduces this risk by about 5%, replacing French fries specifically reduces the risk for developing T2D by up to 20%. PubMedCrossRefGoogle Scholar
  81. 81.
    Bao W, Tobias DK, Hu FB, Chavarro JE, Zhang C. Pre-pregnancy potato consumption and risk of gestational diabetes mellitus: prospective cohort study. BMJ. 2016;352 h6898. doi: 10.1136/bmj.h6898
  82. 82.
    Shivappa N, Steck SE, Hussey JR, Ma Y, Hebert JR. Inflammatory potential of diet and all-cause, cardiovascular, and cancer mortality in National Health and Nutrition Examination Survey III study. Eur J Nutr. doi: 10.1007/s00394-015-1112-x. PMCID: PMC4896851.
  83. 83.
    Fretts AM, Follis JL, Nettleton JA, Lemaitre RN, Ngwa JS, Wojczynski MK, et al. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. Am J Clin Nutr. 2015;102(5):1266–78. doi: 10.3945/ajcn.114.101238.PubMedCrossRefGoogle Scholar
  84. 84.
    Ryan ME, Raja V. Diet, obesity, diabetes, and periodontitis: a syndemic approach to management. Current Oral Health Reports. 2016;3(1):14–27. doi: 10.1007/s40496-016-0075-1.CrossRefGoogle Scholar
  85. 85.
    Bao W, Chavarro JE, Tobias DK, Bowers K, Li S, Hu FB, et al. Long-term risk of type 2 diabetes in relation to habitual iron intake in women with a history of gestational diabetes: a prospective cohort study. Am J Clin Nutr. 2016;103(2):375–81. doi: 10.3945/ajcn.115.108712.PubMedCrossRefGoogle Scholar
  86. 86.
    Pasquale LR, Loomis SJ, Aschard H, Kang JH, Cornelis MC, Qi L, et al. Exploring genome-wide - dietary heme iron intake interactions and the risk of type 2 diabetes. Front Genet. 2013;4(No Iss):#7. doi: 10.3389/fgene.2013.00007.
  87. 87.
    Heerman WJ, Wallston KA, Osborn CY, Bian A, Schlundt DG, Barto SD, et al. Food insecurity is associated with diabetes self-care behaviours and glycaemic control. Diabet Med. 2016;33(6):844–50. doi: 10.1111/dme.12896. PMCID: PMC4769979.
  88. 88.
    Lund-Blix NA, Stene LC, Rasmussen T, Torjesen PA, Andersen LF, Ronningen KS. Infant feeding in relation to islet autoimmunity and type 1 diabetes in genetically susceptible children: the MIDIA study. Diabetes Care. 2015;38(2):257–63. doi: 10.2337/dc14-1130.PubMedCrossRefGoogle Scholar
  89. 89.
    Junnila SK. Type 1 diabetes epidemic in Finland is triggered by zinc-containing amorphous silica nanoparticles. Med Hypotheses. 2015;84(4):336–40. doi: 10.1016/j.mehy.2015.01.021.PubMedCrossRefGoogle Scholar
  90. 90.
    Pushparani DS. Zinc and type 2 diabetes mellitus with periodontitis—a systematic review. Curr Diabetes Rev. 2014;10(6):397–401.PubMedCrossRefGoogle Scholar
  91. 91.
    Vogtmann E, Graubard B, Loftfield E, Chaturvedi A, Dye BA, Abnet CC, et al. Contemporary impact of tobacco use on periodontal disease in the USA. Tob Control. doi: 10.1136/tobaccocontrol-2015-052750.
  92. 92.
    Yu V, Rahimy M, Korrapati A, Xuan Y, Zou AE, Krishnan AR, et al. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol. 2016;52:58–65. doi: 10.1016/j.oraloncology.2015.10.018.PubMedCrossRefGoogle Scholar
  93. 93.
    Pan A, Wang Y, Talaei M, Hu FB, Wu T. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(12):958–67. doi: 10.1016/S2213-8587(15)00316-2.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang C, Wang Y, Wu J, Liu S, Zhu Y, Lv S, et al. Current smoking dose-dependently associated with decreased β-cell function in Chinese men without diabetes. J Diabetes Res. 2015;2015(No Iss):#841768. doi: 10.1155/2015/841768.
  95. 95.
    Oba S, Suzuki E, Yamamoto M, Horikawa Y, Nagata C, Takeda J. Active and passive exposure to tobacco smoke in relation to insulin sensitivity and pancreatic β-cell function in Japanese subjects. Diabetes Metab. 2015;41(2):160–7. doi: 10.1016/j.diabet.2014.09.002.PubMedCrossRefGoogle Scholar
  96. 96.
    Sanders A, Slade G. State cigarette excise tax, secondhand smoke exposure, and periodontitis in US nonsmokers. Am J Public Health. 2013;103(4):740–6. doi: 10.2105/ajph.2011.300579.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Eberhard J, Stiesch M, Kerling A, Bara C, Eulert C, Hilfiker-Kleiner D, et al. Moderate and severe periodontitis are independent risk factors associated with low cardiorespiratory fitness in sedentary non-smoking men aged between 45 and 65 years. J Clin Periodontol. 2014;41(1):31–7. doi: 10.1111/jcpe.12183.PubMedCrossRefGoogle Scholar
  98. 98.
    de Rezende LF, Rodrigues Lopes M, Rey-Lopez JP, Matsudo VK, Luiz OC. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):e105620. doi: 10.1371/journal.pone.0105620.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wiener RC. Relationship of routine inadequate sleep duration and periodontitis in a nationally representative sample. Sleep Disord. 2016;2016(No Iss):9158195. doi: 10.1155/2016/9158195.
  100. 100.
    Sanders AE, Essick GK, Beck JD, Cai J, Beaver S, Finlayson TL, et al. Periodontitis and sleep disordered breathing in the Hispanic community health study/study of Latinos. Sleep. 2015;38(8):1195–203. doi: 10.5665/sleep.4890.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Gunaratnam K, Taylor B, Curtis B, Cistulli P. Obstructive sleep apnoea and periodontitis: a novel association? Sleep Breath. 2009;13(3):233–9. doi: 10.1007/s11325-008-0244-0.PubMedCrossRefGoogle Scholar
  102. 102.
    Ahmad NE, Sanders AE, Sheats R, Brame JL, Essick GK. Obstructive sleep apnea in association with periodontitis: a case–control study. J Dent Hyg. 2013;87(4):188–99.PubMedGoogle Scholar
  103. 103.
    Li Y, Gao X, Winkelman JW, Cespedes EM, Jackson CL, Walters AS, et al. Association between sleeping difficulty and type 2 diabetes in women. Diabetologia. 2016;59(4):719–27. doi: 10.1007/s00125-015-3860-9.PubMedCrossRefGoogle Scholar
  104. 104.
    Sundararajan S, Muthukumar S, Rao SR. Relationship between depression and chronic periodontitis. J Indian Soc Periodontol. 2015;19(3):294–6. doi: 10.4103/0972-124X.153479.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Refulio Z, Rocafuerte M, de la Rosa M, Mendoza G, Chambrone L. Association among stress, salivary cortisol levels, and chronic periodontitis. J Periodontal Implant Sci. 2013;43(2):96–100. doi: 10.5051/jpis.2013.43.2.96.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Crump C, Sundquist J, Winkleby MA, Sundquist K. Stress resilience and subsequent risk of type 2 diabetes in 1.5 million young men. Diabetologia. 2016;59(4):728–33. doi: 10.1007/s00125-015-3846-7.PubMedCrossRefGoogle Scholar
  107. 107.
    Demmer RT, Gelb S, Suglia SF, Keyes KM, Aiello AE, Colombo PC, et al. Sex differences in the association between depression, anxiety, and type 2 diabetes mellitus. Psychosom Med. 2015;77(4):467–77. doi: 10.1097/PSY.0000000000000169.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Heidemann C, Niemann H, Paprott R, Du Y, Rathmann W, Scheidt-Nave C. Residential traffic and incidence of type 2 diabetes: the German Health Interview and Examination Surveys. Diabet Med. 2014;31(10):1269–76. doi: 10.1111/dme.12480.PubMedCrossRefGoogle Scholar
  109. 109.
    Wehmeyer MM, Corwin CL, Guthmiller JM, Lee JY. The impact of oral health literacy on periodontal health status. J Public Health Dent. 2014;74:80–7. doi: 10.1111/j.1752-7325.2012.00375.x.PubMedCrossRefGoogle Scholar
  110. 110.
    Al Sayah F, Majumdar SR, Williams B, Robertson S, Johnson JA. Health literacy and health outcomes in diabetes: a systematic review. J Gen Intern Med. 2013;28(3):444–52. doi: 10.1007/s11606-012-2241-z.PubMedCrossRefGoogle Scholar
  111. 111.
    Capoccia K, Odegard PS, Letassy N. Medication adherence with diabetes medication: a systematic review of the literature. Diabetes Educ. 2016;42:34–71. doi: 10.1177/0145721715619038.PubMedCrossRefGoogle Scholar
  112. 112.
    Han DH, Lee HJ, Lim S. Smoking induced heavy metals and periodontitis: findings from the Korea National Health and Nutrition Examination Surveys 2008–2010. J Clin Periodontol. 2013;40:850–8. doi: 10.1111/jcpe.12133.PubMedCrossRefGoogle Scholar
  113. 113.
    Pavlikova N, Smetana P, Halada P, Kovar J. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells. Environ Res. 2015;142:257–63. doi: 10.1016/j.envres.2015.06.046.PubMedCrossRefGoogle Scholar
  114. 114.
    Kuo CC, Moon K, Thayer KA, Navas-Acien A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep. 2013;13(6):831–49. doi: 10.1007/s11892-013-0432-6.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Tang M, Chen K, Yang F, Liu W. Exposure to organochlorine pollutants and type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2014;9(10):e85556. doi: 10.1371/journal.pone.0085556.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Leong A, Rahme E, Dasgupta K. Spousal diabetes as a diabetes risk factor: a systematic review and meta-analysis. BMC Med. 2014;12(No Iss):12. doi: 10.1186/1741-7015-12-12.
  117. 117.
    Borgnakke WS. Ch. 6. Hyperglycemia/diabetes mellitus and periodontal infection adversely affect each other. In: Genco RJ, Williams RC, editors. Periodontal disease and overall health: a clinician’s guide. 2nd ed. Yardley, PA: Professional Audience Communications; 2014 p. 99–122. Available: http://www.Colgateprofessional.Com/professional/v1/en/us/locale-assets/docs/periodontal-disease-and-overall-health-a-clinicians-guide-2nd-edition.pdf.
  118. 118.
    Eke PI, Page RC, Wei L, Thornton-Evans G, Genco RJ. Update of the case definitions for population-based surveillance of periodontitis. J Periodontol. 2012;83(12):1449–54. doi: 10.1902/jop.2012.110664.PubMedCrossRefGoogle Scholar
  119. 119.
    Löe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36(3):177–87. doi: 10.1902/jop.1965.36.3.177.PubMedCrossRefGoogle Scholar
  120. 120.
    Strauss SM, Stefanou LB. Interdental cleaning among persons with diabetes: relationships with individual characteristics. Int J Dent Hyg. 2014;12(2):127–32. doi: 10.1111/idh.12037.PubMedCrossRefGoogle Scholar
  121. 121.
    Guo Y, Li HY. Association between Helicobacter pylori infection and colorectal neoplasm risk: a meta-analysis based on East Asian population. 2014;10(8):263–6. doi: 10.4103/0973-1482.151482.
  122. 122.
    Borgnakke WS. Ch 4. The traveling oral microbiome. In: Glick M, editor. The oral-systemic health connection: a guide to patient care. 312 pp. Chicago, IL: Quintessence; 2014. p. 61–102.Google Scholar
  123. 123.
    Al Sayed A, Anand PS, Kamath KP, Patil S, Preethanath RS, Anil S. Oral cavity as an extragastric reservoir of Helicobacter pylori. ISRN Gastroenterol. 2014;2014(No Iss):261369. doi: 10.1155/2014/261369.
  124. 124.
    Ding YJ, Yan TL, Hu XL, Liu JH, Yu CH, Li YM, et al. Association of salivary Helicobacter pylori infection with oral diseases: a cross-sectional study in a Chinese population. Int J Med Sci. 2015;12(9):742–7. doi: 10.7150/ijms.11050.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Christmann BS, Abrahamsson TR, Bernstein CN, Duck LW, Mannon PJ, Berg G, et al. Human seroreactivity to gut microbiota antigens. J Allergy Clin Immunol. 2015;136(5):1378–86. doi: 10.1016/j.jaci.2015.03.036. 1386e1-5.PubMedCrossRefGoogle Scholar
  126. 126.
    Shungin D, Cornelis MC, Divaris K, Holtfreter B, Shaffer JR, Yu YH, et al. Using genetics to test the causal relationship of total adiposity and periodontitis: Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) consortium. Int J Epidemiol. 2015;44(2):638–50. doi: 10.1093/ije/dyv075.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gokhale NH, Acharya AB, Patil VS, Trivedi DJ, Setty S, Thakur SL. Resistin levels in gingival crevicular fluid of patients with chronic periodontitis and type 2 diabetes mellitus. J Periodontol. 2014;85(4):610–7. doi: 10.1902/jop.2013.130092.PubMedCrossRefGoogle Scholar
  128. 128.
    Nibali L, Tatarakis N, Needleman I, Tu YK, D’Aiuto F, Rizzo M, et al. Clinical review: association between metabolic syndrome and periodontitis: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2013;98(3):913–20. doi: 10.1210/jc.2012-3552.PubMedCrossRefGoogle Scholar
  129. 129.
    Watanabe K, Cho YD. Periodontal disease and metabolic syndrome: a qualitative critical review of their association. Arch Oral Biol. 2014;59(8):855–70. doi: 10.1016/j.archoralbio.2014.05.003.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Janket SJ, Ackerson LK. What is passing through toll gate 4: lipids or infection? Arch Oral Biol. 2015;60(4):664–6. doi: 10.1016/j.archoralbio.2015.01.007.PubMedCrossRefGoogle Scholar
  131. 131.
    U.S. Preventive Services Task Force. Draft recommendation statement: statin use for the primary prevention of cardiovascular disease in adults: preventive medication, 2016. Available: http://www.Uspreventiveservicestaskforce.Org/page/document/draft-recommendation-statement175/statin-use-in-adults-preventive-medication1.
  132. 132.
    Hert KA, 2nd Fisk PS, Rhee YS, Brunt AR. Decreased consumption of sugar-sweetened beverages improved selected biomarkers of chronic disease risk among US adults: 1999 to 2010. Nutr Res. 2014;34(1):58–65. doi: 10.1016/j.nutres.2013.10.005.PubMedCrossRefGoogle Scholar
  133. 133.
    Park S, Xu F, Town M, Blanck HM. Prevalence of sugar-sweetened beverage intake among adults—23 states and the District of Columbia, 2013. MMWR Morb Mortal Wkly Rep. 2016;65(7):169–74. doi: 10.15585/mmwr.mm6507a1.Google Scholar
  134. 134.
    van Buul VJ, Tappy L, Brouns FJ. Misconceptions about fructose-containing sugars and their role in the obesity epidemic. Nutr Res Rev. 2014;27(1):119–30. doi: 10.1017/s0954422414000067.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wang J, Light K, Henderson M, O’Loughlin J, Mathieu ME, Paradis G, et al. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity. J Nutr. 2014;144(1):81–6. doi: 10.3945/jn.113.182519.PubMedCrossRefGoogle Scholar
  136. 136.
    Lamb MM, Frederiksen B, Seifert JA, Kroehl M, Rewers M, Norris JM. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Diabetologia. 2015;58(9):2027–34. doi: 10.1007/s00125-015-3657-x.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kulkarni V, Bhatavadekar NB, Uttamani JR. The effect of nutrition on periodontal disease: a systematic review. J Calif Dent Assoc. 2014;42(5):302–11.PubMedGoogle Scholar
  138. 138.
    Javed F, Bashir Ahmed H, Romanos GE. Association between environmental tobacco smoke and periodontal disease: a systematic review. Environ Res. 2014;133:117–22. doi: 10.1016/j.envres.2014.05.008.PubMedCrossRefGoogle Scholar
  139. 139.
    de Rezende LF, Sa TH, Mielke GI, Viscondi JY, Rey-Lopez JP, Garcia LM. All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am J Prev Med. doi: 10.1016/j.amepre.2016.01.022.
  140. 140.
    Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9. doi: 10.1016/s0140-6736(99)01376-8.PubMedCrossRefGoogle Scholar
  141. 141.
    Van Cauter E, Spiegel K. Sleep as a mediator of the relationship between socioeconomic status and health: a hypothesis. Ann N Y Acad Sci. 1999;896(No Iss):254–61.Google Scholar
  142. 142.
    Koren D, O’Sullivan KL, Mokhlesi B. Metabolic and glycemic sequelae of sleep disturbances in children and adults. Curr Diab Rep. 2015;15(1):562. doi: 10.1007/s11892-014-0562-5.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    McEwen BS, Stellar E. Stress and the individual; mechanisms leading to disease. Arch Intern Med. 1993;153(18):2093–101.PubMedCrossRefGoogle Scholar
  144. 144.
    Araujo MM, Martins CC, Costa LC, Cota LO, Faria RL, Cunha FA, et al. Association between depression and periodontitis: a systematic review and meta-analysis. J Clin Periodontol. 2016;43(3):216–28. doi: 10.1111/jcpe.12510.PubMedCrossRefGoogle Scholar
  145. 145.
    Kutner M, Greenberg E, Jin Y, Boyle B, Hsu Y, Dunleavy E. Literacy in everyday life; results from the 2003 National Assessment of Adult Literacy (NCES 2007–480). U.S. Department of Education, National Center for Education Statistics, Washington, DC. 2007. Available: http://nces.Ed.Gov/pubs2007/2007480.pdf.
  146. 146.••
    Kutner M. The health literacy of America’s adults; results from the 2003 National Assessment of Adult Literacy (NCES 2006–483). U.S. Department of Education, National Center for Education Statistics, Washington, DC. 2006. Available: http://nces.Ed.Gov/pubs2006/2006483.pdf. This paper reports on the health literacy of the US adults based on data from a federal, population based, national study. It is imperative that all health professionals are acutely aware of these findings that paint a stunning picture of near complete lack of health literacy with 9 of 10 scoring less than Proficient, a result that is largely incomprehensible for anyone with a post-secondary education level. Yet, proper patient communication is imperative for health professionals who must adjust their messages according to the patient’s comprehension level.
  147. 147.
    Sotos-Prieto M, Bhupathiraju SN, Falcon LM, Gao X, Tucker KL, Mattei J. A healthy lifestyle score is associated with cardiometabolic and neuroendocrine risk factors among Puerto Rican adults. J Nutr. 2015;145(7):1531–40. doi: 10.3945/jn.114.206391.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Sotos-Prieto M, Bhupathiraju SN, Falcon LM, Gao X, Tucker KL, Mattei J. Association between a healthy lifestyle score and inflammatory markers among Puerto Rican adults. Nutr Metab Cardiovasc Dis. 2016;26(3):178–84. doi: 10.1016/j.numecd.2015.12.004.PubMedCrossRefGoogle Scholar
  149. 149.
    Winning A, Glymour MM, McCormick MC, Gilsanz P, Kubzansky LD. Psychological distress across the life course and cardiometabolic risk; findings from the 1958 British Birth Cohort Study. J Am Coll Cardiol. 2015;66(14):1577–86. doi: 10.1016/j.jacc.2015.08.021.PubMedCrossRefGoogle Scholar
  150. 150.
    Warren KR, Postolache TT, Groer ME, Pinjari O, Kelly DL, Reynolds MA. Role of chronic stress and depression in periodontal diseases. Periodontol. 2014;64(1):127–38. doi: 10.1111/prd.12036.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborUSA

Personalised recommendations