Current Oral Health Reports

, Volume 3, Issue 2, pp 93–101 | Cite as

Benign Odontogenic Tumors: Origins, Immunophenotypic Features, and Genetic Alterations

  • Chunmiao Jiang
  • Qilin Xu
  • Qunzhou Zhang
  • Steven Wang
  • Lee R. Carrasco
  • Anh D. LeEmail author
Oral Neoplasia (F Alawi and A Le, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Oral Neoplasia


Odontogenic tumors are lesions derived from the epithelial and/or mesenchymal elements of the tooth-forming apparatus and are therefore found within the jaw bone or soft tissue overlying teeth. These tooth development-associated tumors are generally benign, but several odontogenic tumors are capable of aggressive growth and locally invasive behavior with a high rate of recurrence. Benign odontogenic tumors can pose diagnostic challenges because of overlapping histology, a lack of distinct phenotypic and molecular features, and an unclear pathogenesis of the tumors. In this article, we will review the possible origins, immunophenotypic features, and genetic alterations of the common benign odontogenic tumors.


Odontogenic benign tumors Origin Immunophenotypic markers Gene mutation 


Compliance with Ethical Standard

Conflict of Interest

Chunmiao Jiang, Qilin Xu, Qunzhou Zhang, Lee R. Carrasco, and Anh D. Le declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Barnes L. Pathology and genetics of head and neck tumours. Vol. 9. Lyon: IARC; 2005.Google Scholar
  2. 2.
    Press SG. Odontogenic tumors of the maxillary sinus. Curr Opin Otolaryngol Head Neck Surg. 2008;16(1):47–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Sekerci AE et al. Odontogenic tumors: a collaborative study of 218 cases diagnosed over 12 years and comprehensive review of the literature. Med Oral Patol Oral Cir Bucal. 2015;20(1):e34–44.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jing W et al. Odontogenic tumours: a retrospective study of 1642 cases in a Chinese population. Int J Oral Maxillofac Surg. 2007;36(1):20–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Gorlin RJ, Chaudhry AP, Pindborg JJ. Odontogenic tumors. Classification, histopathology, and clinical behavior in man and domesticated animals. Cancer. 1961;14:73–101.CrossRefPubMedGoogle Scholar
  6. 6.
    Takeda Y, Kuroda M, Suzuki A. Ameloblastoma of mucosal origin. Acta Pathol Jpn. 1988;38(8):1053–60.PubMedGoogle Scholar
  7. 7.
    Kim J, Ellis GL. Dental follicular tissue: misinterpretation as odontogenic tumors. J Oral Maxillofac Surg. 1993;51(7):762–7. discussion 767–8.CrossRefPubMedGoogle Scholar
  8. 8.•
    Nagamalini BR et al. Origin of ameloblastoma from basal cells of the oral epithelium-establishing the relation using neuroectodermal markers. J Clin Diagn Res. 2014;8(10):ZC44. The neuroectoderm, ameloblastoma and the basal layer of the oral epithelium have strong relationship with each other, which favours the hypothesis that the basal cell layer of oral mucosa may be a main source of ameloblastoma, espeically in the non-tooth bearing area. Google Scholar
  9. 9.
    Gagari E. Neuroendocrine markers in ameloblastoma: an immunohistochemical study of 32 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(2):194.CrossRefGoogle Scholar
  10. 10.
    Takeda Y et al. Immunohistochemical expression of neural tissue markers (neuron-specific enolase, glial fibrillary acidic protein, S100 protein) in ameloblastic fibrodentinoma: a comparative study with ameloblastic fibroma. Pathol Int. 2000;50(8):610–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Philipsen HP et al. Peripheral ameloblastoma: biological profile based on 160 cases from the literature. Oral Oncol. 2001;37(1):17–27.CrossRefPubMedGoogle Scholar
  12. 12.
    Kishino M et al. A immunohistochemical study of the peripheral ameloblastoma. Oral Dis. 2007;13(6):575–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Ide F et al. Peripheral ameloblastoma in-situ: an evidential fact of surface epithelium origin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):763–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Ide F. Peripheral ameloblastoma of the buccal mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):653–4. author reply 654–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Kanzaki H et al. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res. 2001;80(3):887–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Rani CS, MacDougall M. Dental cells express factors that regulate bone resorption. Mol Cell Biol Res Commun. 2000;3(3):145–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Sakata M et al. Expression of osteoprotegerin (osteoclastogenesis inhibitory factor) in cultures of human dental mesenchymal cells and epithelial cells. J Bone Miner Res. 1999;14(9):1486–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Pripatnanont P et al. In situ hybridisation and immunocytochemical localisation of osteolytic cytokines and adhesion molecules in ameloblastomas. J Oral Pathol Med. 1998;27(10):496–500.CrossRefPubMedGoogle Scholar
  19. 19.
    Ahlem B et al. Study of Ki67 and CD10 expression as predictive factors of recurrence of ameloblastoma. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132(5):275–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Cavalcante RB et al. Immunohistochemical expression of MMPs 1, 7, and 26 in syndrome and nonsyndrome odontogenic keratocysts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(1):99–105.CrossRefPubMedGoogle Scholar
  21. 21.
    Cross JJL et al. Value of computed tomography and magnetic resonance imaging in the treatment of a calcifying epithelial odontogenic (Pindborg) tumour. Br J Oral Maxillofac Surg. 2000;38(2):154–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez-Mata G et al. Odontogenic myxoma: clinico-pathological, immunohistochemical and ultrastructural findings of a multicentric series. Oral Oncol. 2008;44(6):601–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Miyagi SPH et al. Expression of matrix metalloproteinases 2 and 9 in odontogenic myxoma in vivo and in vitro. J Oral Sci. 2008;50(2):187–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Olimid DA et al. The evaluation of p16 and Ki67 immunoexpression in ameloblastomas. Rom J Morphol Embryol. 2014;55(2):363–7.PubMedGoogle Scholar
  25. 25.
    Lo Muzio L et al. Expression of cell cycle and apoptosis-related proteins in sporadic odontogenic keratocysts and odontogenic keratocysts associated with the nevoid basal cell carcinoma syndrome. J Dent Res. 1999;78(7):1345–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Gadbail AR et al. Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts. Oral Dis. 2009;15(7):490–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Razavi SM, Khalesi S, Torabinia N. Investigation of clinicopathological parameters alongside with p53 expression in primary and recurrent keratocysticodontogenic tumours. Malays J Pathol. 2014;36(2):105–13.PubMedGoogle Scholar
  28. 28.
    Deyhimi P, Hashemzadeh Z. Study of the biologic behavior of odontogenic keratocyst and orthokeratinaized odontogenic cyst using TGF-alpha and P53 markers. Pathol Res Pract. 2014;210(4):201–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Meghji S et al. Interleukin-1: the principal osteolytic cytokine produced by keratocysts. Arch Oral Biol. 1992;37(11):935–43.CrossRefPubMedGoogle Scholar
  30. 30.
    Ogata S et al. Signaling pathways regulating IL-1alpha-induced COX-2 expression. J Dent Res. 2007;86(2):186–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Siar CH, Ishak I, Ng KH. Podoplanin, E-cadherin, beta-catenin, and CD44v6 in recurrent ameloblastoma: their distribution patterns and relevance. J Oral Pathol Med. 2015;44(1):51–8.CrossRefPubMedGoogle Scholar
  32. 32.••
    Saunders S et al. Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol. 1989;108(4):1547–56. Ameloblastoma cells harboring an activating BRAF mutation encoding p.Val600Glu are sensitive to the BRAF inhibitor vemurafenib, making a new paradigm for the diagnostic classification and treatment of ameloblastomas. Google Scholar
  33. 33.••
    Al-Otaibi O et al. Syndecan-1 (CD 138) surface expression marks cell type and differentiation in ameloblastoma, keratocystic odontogenic tumor, and dentigerous cyst. J Oral Pathol Med. 2013;42(2):186–93. Activating FGFR2-RAS-BRAF mutations play a critical role in the pathogenesis of most cases of ameloblastoma. BRAF V600E mutations have both diagnostic and prognostic implications. Google Scholar
  34. 34.
    Cairns L et al. CD56 (NCAM) expression in ameloblastomas and other odontogenic lesions. Histopathology. 2010;57(4):544–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Nakano K, Nagatsuka H, Kawakami T. Wingless-type protein-1 (Wnt-1) expression in primary conventional and unicystic ameloblastomas and their recurrent tumors. J Hard Tissue Biol. 2009;18(2):63–70.CrossRefGoogle Scholar
  36. 36.
    Siar CH et al. Differential expression of canonical and non-canonical Wnt ligands in ameloblastoma. J Oral Pathol Med. 2012;41(4):332–9.CrossRefPubMedGoogle Scholar
  37. 37.
    González‐Alva P et al. Enhanced expression of podoplanin in ameloblastomas. J Oral Pathol Med. 2010;39(1):103–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Ren C et al. Differential enamel and osteogenic gene expression profiles in odontogenic tumors. Cells Tissues Organs. 2011;194(2–4):296–301.CrossRefPubMedGoogle Scholar
  39. 39.
    Kurppa KJ et al. High frequency of BRAF V600E mutations in ameloblastoma. J Pathol. 2014;232(5):492–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Brown NA et al. Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res. 2014;20(21):5517–26.CrossRefPubMedGoogle Scholar
  41. 41.
    Kaminagakura E et al. Detection of cytokeratins in ghost cells of calcifying cystic odontogenic tumor indicates an altered keratinization and hair follicle differentiation for their development. Ann Diagn Pathol. 2013;17(6):514–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Ribeiro BF et al. Immunohistochemical expression of matrix metalloproteinases 1, 2, 7, 9, and 26 in the calcifying cystic odontogenic tumor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(5):609–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhong Y et al. Molecular markers of tumor invasiveness in ameloblastoma: an update. Ann Maxillofac Surg. 2011;1(2):145–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Er N et al. Neural cell adhesion molecule and neurothelin expression in human ameloblastoma. J Oral Maxillofac Surg. 2001;59(8):900–3. discussion 904.CrossRefPubMedGoogle Scholar
  45. 45.
    Kumamoto H, Ooya K. Immunohistochemical detection of MT1-MMP, RECK, and EMMPRIN in ameloblastic tumors. J Oral Pathol Med. 2006;35(6):345–51.CrossRefPubMedGoogle Scholar
  46. 46.
    Davies H et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMedGoogle Scholar
  47. 47.
    Barreto DC et al. PTCH gene mutations in odontogenic keratocysts. J Dent Res. 2000;79(6):1418–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Andrade FR et al. Expression of bone resorption regulators (RANK, RANKL, and OPG) in odontogenic tumors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(4):548–55.CrossRefPubMedGoogle Scholar
  49. 49.
    Wan PT et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.CrossRefPubMedGoogle Scholar
  50. 50.
    Shear M, Speight P. Cysts of the oral and maxillofacial regions. New York: John Wiley & Sons; 2008.Google Scholar
  51. 51.
    Da Silva MJA et al. Immunohistochemical study of the orthokeratinized odontogenic cyst: a comparison with the odontogenic keratocyst. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):732–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Yoshida M et al. Histopathological and immunohistochemical analysis of calcifying odontogenic cysts. J Oral Pathol Med. 2001;30(10):582–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Yagyuu T et al. Recurrence of keratocystic odontogenic tumor: clinicopathological features and immunohistochemical study of the Hedgehog signaling pathway. Pathobiology. 2008;75(3):171–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Farndon PA et al. Location of gene for Gorlin syndrome. Lancet. 1992;339(8793):581–2.CrossRefPubMedGoogle Scholar
  55. 55.
    Da Silva TA et al. Comparative expression of RANK, RANKL, and OPG in keratocystic odontogenic tumors, ameloblastomas, and dentigerous cysts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(3):333–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Bologna-Molina R et al. Comparative expression of syndecan-1 and Ki-67 in peripheral and desmoplastic ameloblastomas and ameloblastic carcinoma. Pathol Int. 2009;59(4):229–33.CrossRefPubMedGoogle Scholar
  57. 57.
    Bello IO et al. Claudins 1, 4, 5, 7 and occludin in ameloblastomas and developing human teeth. J Oral Pathol Med. 2007;36(1):48–54.CrossRefPubMedGoogle Scholar
  58. 58.
    Sweeney RT et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet. 2014;46(7):722–5.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.•
    Ribeiro BF et al. Immunoexpression of MMPs-1, −2, and −9 in ameloblastoma and odontogenic adenomatoid tumor. Oral Dis. 2009;15(7):472–7. TGF-beta, a potent EMT inducer, and Slug, a master transcription factor, were highly expressed in KCOT, suggesting EMT might be involved in the locally aggressive behavior of KCOT. CrossRefPubMedGoogle Scholar
  60. 60.
    Stone DM et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996;384(6605):129–34.CrossRefPubMedGoogle Scholar
  61. 61.
    Kawabata T et al. Polymorphisms in PTCH1 affect the risk of ameloblastoma. J Dent Res. 2005;84(9):812–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Dalati T, Zhou H. Gorlin syndrome with ameloblastoma: a case report and review of literature. Cancer Invest. 2008;26(10):975–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Stoelinga PJW. Etiology and pathogenesis of keratocysts. Oral Maxillofac Surg Clin North Am. 2003;15(3):317–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Stoelinga PJW. The treatment of odontogenic keratocysts by excision of the overlying, attached mucosa, enucleation, and treatment of the bony defect with Carnoy solution. J Oral Maxillofac Surg. 2005;63(11):1662–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Voorsmit RA, Stoelinga PJ, van Haelst UJ. The management of keratocysts. J Maxillofac Surg. 1981;9(4):228–36.CrossRefPubMedGoogle Scholar
  66. 66.
    Shear M. The aggressive nature of the odontogenic keratocyst: is it a benign cystic neoplasm? Part 2. Proliferation and genetic studies. Oral Oncol. 2002;38(4):323–31.CrossRefPubMedGoogle Scholar
  67. 67.
    Iwano M et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.•
    Porto LPA et al. E-cadherin regulators are differentially expressed in the epithelium and stroma of keratocystic odontogenic tumors. J Oral Pathol Med. 2016;45(4):302–11.Google Scholar
  69. 69.
    Zhong WQ et al. Epithelial-mesenchymal transition in keratocystic odontogenic tumor: possible role in locally aggressive behavior. Biomed Res Int. 2015;2015:168089.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Cildir SK et al. Delayed eruption of a mandibular primary cuspid associated with compound odontoma. J Contemp Dent Pract. 2005;6(4):152–9.PubMedGoogle Scholar
  71. 71.
    Kramer IRH, Pindborg JJ, Shear M. Histological typing of odontogenic tumors. World Health Organization. International Histological Classification of Tumors. 1992.CrossRefGoogle Scholar
  72. 72.
    Noffke CE, Chabikuli NJ, Nzima N. Impaired tooth eruption: a review. SADJ. 2005;60(10):422. 424–5.PubMedGoogle Scholar
  73. 73.
    Shekar SE et al. Erupted compound odontome. J Oral Maxillofac Pathol. 2009;13(1):47.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gonzalez-Alva P et al. Podoplanin expression in odontomas: clinicopathological study and immunohistochemical analysis of 86 cases. J Oral Sci. 2011;53(1):67–75.CrossRefPubMedGoogle Scholar
  75. 75.
    Fotiadis C et al. Gardner’s syndrome: a case report and review of the literature. World J Gastroenterol. 2005;11(34):5408–11.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ziebart T et al. The original family revisited after 37 years: odontoma-dysphagia syndrome is most likely caused by a microduplication of chromosome 11q13.3, including the FGF3 and FGF4 genes. Clin Oral Investig. 2013;17(1):123–30.CrossRefPubMedGoogle Scholar
  77. 77.
    Moleri AB, Moreira LC, Carvalho JJ. Comparative morphology of 7 new cases of calcifying odontogenic cysts. J Oral Maxillofac Surg. 2002;60(6):689–96.CrossRefPubMedGoogle Scholar
  78. 78.
    Praetorius F et al. Calcifying odontogenic cyst. Range, variations and neoplastic potential. Acta Odontol Scand. 1981;39(4):227–40.CrossRefPubMedGoogle Scholar
  79. 79.
    Buchner A et al. Peripheral (extraosseous) calcifying odontogenic cyst. A review of forty-five cases. Oral Surg Oral Med Oral Pathol. 1991;72(1):65–70.CrossRefPubMedGoogle Scholar
  80. 80.
    Gong Y et al. The expression of NF-kappaB, Ki-67 and MMP-9 in CCOT. DGCT and GCOC Oral Oncol. 2009;45(6):515–20.CrossRefPubMedGoogle Scholar
  81. 81.
    Sekine S et al. Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol. 2003;163(5):1707–12.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ahn SG et al. Beta-catenin gene alterations in a variety of so-called calcifying odontogenic cysts. APMIS. 2008;116(3):206–11.CrossRefPubMedGoogle Scholar
  83. 83.
    Kaplan I et al. Radiological and clinical features of calcifying epithelial odontogenic tumour. Dentomaxillofac Radiol. 2001;30(1):22–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Azevedo RS et al. Calcifying epithelial odontogenic tumor (CEOT): a clinicopathologic and immunohistochemical study and comparison with dental follicles containing CEOT-like areas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(6):759–68.CrossRefPubMedGoogle Scholar
  85. 85.
    Crivelini MM et al. Cytokeratins in epithelia of odontogenic neoplasms. Oral Dis. 2003;9(1):1–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Crivelini MM et al. Expression of odontogenic ameloblast-associated protein, amelotin, ameloblastin, and amelogenin in odontogenic tumors: immunohistochemical analysis and pathogenetic considerations. J Oral Pathol Med. 2012;41(3):272–80.CrossRefPubMedGoogle Scholar
  87. 87.
    Mori M et al. Expression of tenascin in odontogenic tumours. Eur J Cancer B Oral Oncol. 1995;31B(4):275–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Zhang L et al. Epithelial expression of SHH signaling pathway in odontogenic tumors. Oral Oncol. 2006;42(4):398–408.CrossRefPubMedGoogle Scholar
  89. 89.
    Peacock ZS, Cox D, Schmidt BL. Involvement of PTCH1 mutations in the calcifying epithelial odontogenic tumor. Oral Oncol. 2010;46(5):387–92.CrossRefPubMedGoogle Scholar
  90. 90.
    Regezi JA, Kerr DA, Courtney RM. Odontogenic tumors: analysis of 706 cases. J Oral Surg. 1978;36(10):771–8.PubMedGoogle Scholar
  91. 91.
    Fujita S, Hideshima K, Ikeda T. Nestin expression in odontoblasts and odontogenic ectomesenchymal tissue of odontogenic tumours. J Clin Pathol. 2006;59(3):240–5.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Simon EN et al. Odontogenic myxoma: a clinicopathological study of 33 cases. Int J Oral Maxillofac Surg. 2004;33(4):333–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Schmidt-Westhausen A et al. Odontogenic myxoma--characterisation of the extracellular matrix (ECM) of the tumour stroma. Eur J Cancer B Oral Oncol. 1994;30B(6):377–80.CrossRefPubMedGoogle Scholar
  94. 94.
    Sivakumar G et al. Odontogenic myxoma of maxilla. Indian J Dent Res. 2008;19(1):62–5.CrossRefPubMedGoogle Scholar
  95. 95.
    Bast BT, Pogrel MA, Regezi JA. The expression of apoptotic proteins and matrix metalloproteinases in odontogenic myxomas. J Oral Maxillofac Surg. 2003;61(12):1463–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Sato K et al. Odontogenic myxofibroma with HMGA2 overexpression and HMGA2 rearrangement. Pathol Int. 2010;60(11):760–4.CrossRefPubMedGoogle Scholar
  97. 97.
    Carney JA et al. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore). 1985;64(4):270–83.CrossRefGoogle Scholar
  98. 98.
    Perdigao PF et al. Molecular and immunohistochemical investigation of protein kinase a regulatory subunit type 1A (PRKAR1A) in odontogenic myxomas. Genes Chromosomes Cancer. 2005;44(2):204–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Chunmiao Jiang
    • 1
  • Qilin Xu
    • 1
  • Qunzhou Zhang
    • 1
  • Steven Wang
    • 1
    • 2
  • Lee R. Carrasco
    • 1
    • 2
  • Anh D. Le
    • 1
    • 2
    Email author
  1. 1.Department of Oral and Maxillofacial Surgery and PharmacologyUniversity of Pennsylvania School of Dental MedicinePhiladelphiaUSA
  2. 2.Department of Oral & Maxillofacial SurgeryPenn Medicine Hospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations