Current Oral Health Reports

, Volume 3, Issue 2, pp 82–92 | Cite as

Molecular Signaling in Benign Odontogenic Neoplasia Pathogenesis

  • Hope M. Amm
  • Mary MacDougallEmail author
Oral Neoplasia (F Alawi and A Le, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Oral Neoplasia


Several molecular pathways have been shown to play critical roles in the pathogenesis of odontogenic tumors. These neoplasms arise from the epithelial or mesenchymal cells of the dental apparatus in the jaw or oral mucosa. Next-generation genomic sequencing has identified gene mutations or single nucleotide polymorphisms associated with many of these tumors. In this review, we focus on two of the most common odontogenic tumor subtypes: ameloblastoma and keratocystic odontogenic tumors. We highlight gene expression and protein immunohistological findings and known genetic alterations in the hedgehog, BRAF/Ras/MAPK, epidermal growth factor receptor, Wnt, and Akt signaling pathways relevant to these tumors. These various pathways are explored to potentially target odontogenic tumor cells and prevent growth and recurrence of disease. Through an understanding of these signaling pathways and their crosstalk, molecular diagnostics may emerge as well as the ability to exploit identified molecular differences to develop novel molecular therapeutics for the treatment of odontogenic tumors.


Odontogenic tumors Ameloblastoma Hedgehog BRAF Epidermal growth factor receptor 



This research was supported by NIDCR—DART T32DE017601/T90DE022736, NIDCR—5K99DE023826, the University of Alabama at Birmingham (UAB) School of Dentistry Institute of Oral Health Research, and the UAB Global Center for Craniofacial Oral and Dental Disorders (GC-CODED). We would like to thank Dr. Elizabeth R. Rayburn, Magic City Medical Communications, to editing and revisions of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Dr. Hope Amm and Dr. Mary MacDougall received a grant from the NIH.

Human and Animal Rights and Informed Consent

This article does not describe any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ladeinde AL, Ajayi OF, Ogunlewe MO, Adeyemo WL, Arotiba GT, Bamgbose BO, et al. Odontogenic tumors: a review of 319 cases in a Nigerian teaching hospital. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(2):191–5. doi: 10.1016/j.tripleo.2004.08.031.CrossRefPubMedGoogle Scholar
  2. 2.
    Abdullah WA. Surgical treatment of keratocystic odontogenic tumour: a review article. Saudi Dent J. 2011;23(2):61–5. doi: 10.1016/j.sdentj.2011.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hong J, Yun PY, Chung IH, Myoung H, Suh JD, Seo BM, et al. Long-term follow up on recurrence of 305 ameloblastoma cases. Int J Oral Maxillofac Surg. 2007;36(4):283–8. doi: 10.1016/j.ijom.2006.11.003.CrossRefPubMedGoogle Scholar
  4. 4.
    Finkelstein MW, Hellstein JW, Lake KS, Vincent SD. Keratocystic odontogenic tumor: a retrospective analysis of genetic, immunohistochemical and therapeutic features. Proposal of a multicenter clinical survey tool. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(1):75–83. doi: 10.1016/j.oooo.2013.03.018.CrossRefPubMedGoogle Scholar
  5. 5.
    Infante-Cossio P, Prats-Golczer V, Gonzalez-Perez LM, Belmonte-Caro R, Martinez DEFR, Torres-Carranza E, et al. Treatment of recurrent mandibular ameloblastoma. Exp Ther Med. 2013;6(2):579–83. doi: 10.3892/etm.2013.1165.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Pitak-Arnnop P, Chaine A, Oprean N, Dhanuthai K, Bertrand JC, Bertolus C. Management of odontogenic keratocysts of the jaws: a ten-year experience with 120 consecutive lesions. J Craniomaxillofac Surg. 2010;38(5):358–64. doi: 10.1016/j.jcms.2009.10.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Sehdev MK, Huvos AG, Strong EW, Gerold FP, Willis GW. Proceedings: ameloblastoma of maxilla and mandible. Cancer. 1974;33(2):324–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Barnes L, Eveson J, Reichart P, Sidransky D, editors. World health organization classification of tumors, pathology, and genetics of head and neck tumors. Lyons: IARC Press; 2005.Google Scholar
  9. 9.
    Buchner A, Merrell PW, Carpenter WM. Relative frequency of central odontogenic tumors: a study of 1,088 cases from Northern California and comparison to studies from other parts of the world. J Oral Maxillofac Surg. 2006;64(9):1343–52. doi: 10.1016/j.joms.2006.05.019.CrossRefPubMedGoogle Scholar
  10. 10.
    Titinchi F, Nortje CJ. Keratocystic odontogenic tumor: a recurrence analysis of clinical and radiographic parameters. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(1):136–42. doi: 10.1016/j.oooo.2012.01.032.CrossRefPubMedGoogle Scholar
  11. 11.
    Chrysomali E, Leventis M, Titsinides S, Kyriakopoulos V, Sklavounou A. Odontogenic tumors. J Craniofac Surg. 2013;24(5):1521–5. doi: 10.1097/SCS.0b013e3182997aaf.CrossRefPubMedGoogle Scholar
  12. 12.
    Bilodeau EA, Hoschar AP, Barnes EL, Hunt JL, Seethala RR. Clear cell carcinoma and clear cell odontogenic carcinoma: a comparative clinicopathologic and immunohistochemical study. Head Neck Pathol. 2011;5(2):101–7. doi: 10.1007/s12105-011-0244-4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.•
    Bilodeau EA, Prasad JL, Alawi F, Seethala RR. Molecular and genetic aspects of odontogenic lesions. Head Neck Pathol. 2014;8(4):400–10. doi: 10.1007/s12105-014-0588-7. Thorough review of literature regarding molecular aspects of many odontogenic lesions.
  14. 14.
    Li TJ. The odontogenic keratocyst: a cyst, or a cystic neoplasm? J Dent Res. 2011;90(2):133–42. doi: 10.1177/0022034510379016.CrossRefPubMedGoogle Scholar
  15. 15.
    Aszterbaum M, Rothman A, Johnson RL, Fisher M, Xie J, Bonifas JM, et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol. 1998;110(6):885–8. doi: 10.1046/j.1523-1747.1998.00222.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272(5268):1668–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Lam EW, Lee L, Perschbacher SE, Pharoah MJ. The occurrence of keratocystic odontogenic tumours in nevoid basal cell carcinoma syndrome. Dentomaxillofac Radiol. 2009;38(7):475–9. doi: 10.1259/dmfr/22328028.CrossRefPubMedGoogle Scholar
  18. 18.
    Ponti G, Pollio A, Pastorino L, Pellacani G, Magnoni C, Nasti S, et al. Patched homolog 1 gene mutation (p.G1093R) induces nevoid basal cell carcinoma syndrome and non-syndromic keratocystic odontogenic tumors: a case report. Oncol Lett. 2012;4(2):241–4. doi: 10.3892/ol.2012.707.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sun LS, Li XF, Li TJ. PTCH1 and SMO gene alterations in keratocystic odontogenic tumors. J Dent Res. 2008;87(6):575–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Pan S, Li TJ. PTCH1 mutations in odontogenic keratocysts: are they related to epithelial cell proliferation? Oral Oncol. 2009;45(10):861–5. doi: 10.1016/j.oraloncology.2009.02.003.CrossRefPubMedGoogle Scholar
  21. 21.•
    Ren C, Amm HM, Devilliers P, Wu Y, Deatherage JR, Liu Z, et al. Targeting the sonic hedgehog pathway in keratocystic odontogenic tumor. J Biol Chem. 2012;287(32):27117–25. doi: 10.1074/jbc.M112.367680. This study was the first to establish a KCOT cell population and demonstrate the utility of hedgehog inhibitors for the treatment of KCOTs in vitro.
  22. 22.
    Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis. 2009;30(1):131–40. doi: 10.1093/carcin/bgn230.CrossRefPubMedGoogle Scholar
  23. 23.
    Kimi K, Ohki K, Kumamoto H, Kondo M, Taniguchi Y, Tanigami A, et al. Immunohistochemical and genetic analysis of mandibular cysts in heterozygous ptc knockout mice. J Oral Pathol Med. 2003;32(2):108–13.CrossRefPubMedGoogle Scholar
  24. 24.
    Grachtchouk M, Liu J, Wang A, Wei L, Bichakjian CK, Garlick J, et al. Odontogenic keratocysts arise from quiescent epithelial rests and are associated with deregulated hedgehog signaling in mice and humans. Am J Pathol. 2006;169(3):806–14. doi: 10.2353/ajpath.2006.060054.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Peacock ZS, Cox D, Schmidt BL. Involvement of PTCH1 mutations in the calcifying epithelial odontogenic tumor. Oral Oncol. 2010;46(5):387–92. doi: 10.1016/j.oraloncology.2010.02.023.CrossRefPubMedGoogle Scholar
  26. 26.
    Amm HM, Rollins DL, Ren C, Dong J, DeVilliers P, Rivera H, et al. Establishment and characterization of a primary calcifying epithelial odontogenic tumor cell population. J Oral Pathol Med. 2014;43(3):183–90. doi: 10.1111/jop.12125.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of Smoothened. Nat. 2002;418(6900):892–7. doi: 10.1038/nature00989.
  28. 28.••
    Brown NA, Rolland D, McHugh JB, Weigelin HC, Zhao L, Lim MS, et al. Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res. 2014;20(21):5517–26. doi: 10.1158/1078-0432.CCR-14-1069. This study demonstrated that BRAF mutations as well as other pathways components, FGFR2 and RAS, were mutated in ameloblastoma tumors and showed the in vitro effect of BRAF inhibition on an ameloblastoma cell population.
  29. 29.••
    Sweeney RT, McClary AC, Myers BR, Biscocho J, Neahring L, Kwei KA, et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet. 2014;46(7):722–5. doi: 10.1038/ng.2986. This study described the location-dependent prevalence of BRAF and SMO mutations in ameloblastomas with mandibular ameloblastomas primarily having BRAF mutations and maxillary ameloblastomas SMO mutations.
  30. 30.
    Vered M, Peleg O, Taicher S, Buchner A. The immunoprofile of odontogenic keratocyst (keratocystic odontogenic tumor) that includes expression of PTCH, SMO, GLI-1 and bcl-2 is similar to ameloblastoma but different from odontogenic cysts. J Oral Pathol Med. 2009;38(7):597–604. doi: 10.1111/j.1600-0714.2009.00778.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Heikinheimo K, Jee KJ, Niini T, Aalto Y, Happonen RP, Leivo I, et al. Gene expression profiling of ameloblastoma and human tooth germ by means of a cDNA microarray. J Dent Res. 2002;81(8):525–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Barreto DC, Bale AE, De Marco L, Gomez RS. Immunolocalization of PTCH protein in odontogenic cysts and tumors. J Dent Res. 2002;81(11):757–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Kumamoto H, Ohki K, Ooya K. Expression of Sonic hedgehog (SHH) signaling molecules in ameloblastomas. J Oral Pathol Med. 2004;33(3):185–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang L, Chen XM, Sun ZJ, Bian Z, Fan MW, Chen Z. Epithelial expression of SHH signaling pathway in odontogenic tumors. Oral Oncol. 2006;42(4):398–408. doi: 10.1016/j.oraloncology.2005.09.008.CrossRefPubMedGoogle Scholar
  35. 35.
    DeVilliers P, Suggs C, Simmons D, Murrah V, Wright JT. Microgenomics of ameloblastoma. J Dent Res. 2011;90(4):463–9. doi: 10.1177/0022034510391791.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.•
    Kanda S, Mitsuyasu T, Nakao Y, Kawano S, Goto Y, Matsubara R, et al. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma. Int J Oncol. 2013;43(3):695–702. doi: 10.3892/ijo.2013.2010. This study was the first demonstrate the utility of hedgehog inhibitors for the treatment of ameloblastomas in vitro.
  37. 37.
    Gurgel CA, Buim ME, Carvalho KC, Sales CB, Reis MG, de Souza RO, et al. Transcriptional profiles of SHH pathway genes in keratocystic odontogenic tumor and ameloblastoma. J Oral Pathol Med. 2014;43(8):619–26. doi: 10.1111/jop.12180.CrossRefPubMedGoogle Scholar
  38. 38.
    Goldberg LH, Landau JM, Moody MN, Kazakevich N, Holzer AM, Myers A. Resolution of odontogenic keratocysts of the jaw in basal cell nevus syndrome with GDC-0449. Arch Dermatol. 2011;147(7):839–41. doi: 10.1001/archdermatol.2011.50.CrossRefPubMedGoogle Scholar
  39. 39.
    Mendes RA, Carvalho JF, van der Waal I. Biological pathways involved in the aggressive behavior of the keratocystic odontogenic tumor and possible implications for molecular oriented treatment—an overview. Oral Oncol. 2010;46(1):19–24. doi: 10.1016/j.oraloncology.2009.10.009.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang L, Sun ZJ, Zhao YF, Bian Z, Fan MW, Chen Z. Inhibition of SHH signaling pathway: molecular treatment strategy of odontogenic keratocyst. Med Hypotheses. 2006;67(5):1242–4. doi: 10.1016/j.mehy.2006.04.062.CrossRefPubMedGoogle Scholar
  41. 41.
    Booms P, Harth M, Sader R, Ghanaati S. Vismodegib hedgehog-signaling inhibition and treatment of basal cell carcinomas as well as keratocystic odontogenic tumors in Gorlin syndrome. Ann Maxillofac Surg. 2015;5(1):14–9. doi: 10.4103/2231-0746.161049.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.•
    Ally MS, Tang JY, Joseph T, Thompson B, Lindgren J, Raphael MA, et al. The use of vismodegib to shrink keratocystic odontogenic tumors in patients with basal cell nevus syndrome. JAMA Dermatol. 2014;150(5):542–5. doi: 10.1001/jamadermatol.2013.7444. This paper demonstrated the clinical utility of hedgehog inhibition for the treatment of KCOT in six patients with NBCCS-associated KCOTs.
  43. 43.
    Brown NA, Betz BL. Ameloblastoma: a review of recent molecular pathogenetic discoveries. Biomark Cancer. 2015;7 Suppl 2:19–24. doi: 10.4137/BIC.S29329.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cardiff RD, Leder A, Kuo A, Pattengale PK, Leder P. Multiple tumor types appear in a transgenic mouse with the ras oncogene. Am J Pathol. 1993;142(4):1199–207.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Dodds AP, Cannon RE, Suggs CA, Wright JT. mRNA expression and phenotype of odontogenic tumours in the v-Ha-ras transgenic mouse. Arch Oral Biol. 2003;48(12):843–50.CrossRefPubMedGoogle Scholar
  46. 46.••
    Kurppa KJ, Caton J, Morgan PR, Ristimaki A, Ruhin B, Kellokoski J, et al. High frequency of BRAF V600E mutations in ameloblastoma. J Pathol. 2014;232(5):492–8. doi: 10.1002/path.4317. The first study to demonstrate the high prevalence of BRAF mutations in ameloblastomas and the resistance of an BRAF mutant ameloblastoma cell population to EGFR-inhibition.
  47. 47.
    Diniz MG, Gomes CC, Guimaraes BV, Castro WH, Lacerda JC, Cardoso SV, et al. Assessment of BRAFV600E and SMOF412E mutations in epithelial odontogenic tumours. Tumour Biol. 2015;36(7):5649–53. doi: 10.1007/s13277-015-3238-0.CrossRefPubMedGoogle Scholar
  48. 48.
    Brunner P, Bihl M, Jundt G, Baumhoer D, Hoeller S. BRAF p.V600E mutations are not unique to ameloblastoma and are shared by other odontogenic tumors with ameloblastic morphology. Oral Oncol. 2015;51(10):e77–8. doi: 10.1016/j.oraloncology.2015.07.010.CrossRefPubMedGoogle Scholar
  49. 49.••
    Kaye FJ, Ivey AM, Drane WE, Mendenhall WM, Allan RW. Clinical and radiographic response with combined BRAF-targeted therapy in stage 4 ameloblastoma. J Natl Cancer Inst. 2015;107(1):378. doi: 10.1093/jnci/dju378. The first study to show clinical response of an ameloblastoma to BRAF inhibition in a patient with recurrent stage 4 ameloblastoma.
  50. 50.
    Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54. doi: 10.1038/nrc1609.CrossRefPubMedGoogle Scholar
  51. 51.
    Sweeny L, Dean NR, Magnuson JS, Carroll WR, Helman EE, Hyde SO, et al. EGFR expression in advanced head and neck cutaneous squamous cell carcinoma. Head Neck. 2012;34(5):681–6. doi: 10.1002/hed.21802.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vered M, Shohat I, Buchner A. Epidermal growth factor receptor expression in ameloblastoma. Oral Oncol. 2003;39(2):138–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Payeras MR, Sant’Ana Filho M, Lauxen IS, Barbachan JJ. Quantitative analysis of argyrophilic nucleolar organizer regions and epidermal growth factor receptor in ameloblastomas. J Oral Pathol Med. 2007;36(2):99–104. doi: 10.1111/j.1600-0714.2007.00472.x.CrossRefPubMedGoogle Scholar
  54. 54.
    Abdel-Aziz A, Amin MM. EGFR, CD10 and proliferation marker Ki67 expression in ameloblastoma: possible role in local recurrence. Diagn Pathol. 2012;7:14. doi: 10.1186/1746-1596-7-14.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Siqueira AS, Carvalho MR, Monteiro AC, Freitas VM, Jaeger RG, Pinheiro JJ. Matrix metalloproteinases, TIMPs and growth factors regulating ameloblastoma behaviour. Histopathology. 2010;57(1):128–37. doi: 10.1111/j.1365-2559.2010.03596.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Oikawa M, Miki Y, Shimizu Y, Kumamoto H. Assessment of protein expression and gene status of human epidermal growth factor receptor (HER) family molecules in ameloblastomas. J Oral Pathol Med. 2013;42(5):424–34. doi: 10.1111/jop.12024.CrossRefPubMedGoogle Scholar
  57. 57.
    Shrestha P, Yamada K, Higashiyama H, Takagi H, Mori M. Epidermal growth factor receptor in odontogenic cysts and tumors. J Oral Pathol Med. 1992;21(7):314–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Ribeiro AL, Nobre RM, Alves-Junior SM, Kataoka MS, Barroso RF, Jaeger RG, et al. Matrix metalloproteinases, tissue inhibitors of metalloproteinases, and growth factors regulate the aggressiveness and proliferative activity of keratocystic odontogenic tumors. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(4):487–96. doi: 10.1016/j.oooo.2012.06.011.CrossRefPubMedGoogle Scholar
  59. 59.
    Goncalves CK, Fregnani ER, Leon JE, Silva-Sousa YT, Perez DE. Immunohistochemical expression of p63, epidermal growth factor receptor (EGFR) and notch-1 in radicular cysts, dentigerous cysts and keratocystic odontogenic tumors. Braz Dent J. 2012;23(4):337–43.CrossRefPubMedGoogle Scholar
  60. 60.
    Lin J, Bianchi M, Popnikolov NK, Abaza NA. Calcifying epithelial odontogenic tumor: case report with immunohistochemical and ultrastructural study and review of the literature. J Oral Maxillofac Surg. 2013;71(2):278–89. doi: 10.1016/j.joms.2012.06.171.CrossRefPubMedGoogle Scholar
  61. 61.•
    da Rosa MR, Falcao AS, Fuzii HT, da Silva Kataoka MS, Ribeiro AL, Boccardo E, et al. EGFR signaling downstream of EGF regulates migration, invasion, and MMP secretion of immortalized cells derived from human ameloblastoma. Tumour Biol. 2014;35(11):11107–20. doi: 10.1007/s13277-014-2401-3. In vitro analysis of EGF treatment on an immortalized ameloblastoma cell population showing EGF effects ameloblastoma cell migration and MMP secretion.
  62. 62.
    Ribeiro BF, Iglesias DP, Nascimento GJ, Galvao HC, Medeiros AM, Freitas RA. Immunoexpression of MMPs-1, -2, and -9 in ameloblastoma and odontogenic adenomatoid tumor. Oral Dis. 2009;15(7):472–7. doi: 10.1111/j.1601-0825.2009.01575.x.CrossRefPubMedGoogle Scholar
  63. 63.
    de Oliveira Ramos G, Costa A, Meurer MI, Vieira DS, Rivero ER. Immunohistochemical analysis of matrix metalloproteinases (1, 2, and 9), Ki-67, and myofibroblasts in keratocystic odontogenic tumors and pericoronal follicles. J Oral Pathol Med. 2014;43(4):282–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Amm HM, Casimir MD, Clark DB, Sohn P, MacDougall M. Matrix metalloproteinase expression in keratocystic odontogenic tumors and primary cells. Connect Tissue Res. 2014;55 Suppl 1:97–101. doi: 10.3109/03008207.2014.923875.CrossRefPubMedGoogle Scholar
  65. 65.
    Tan CS, Gilligan D, Pacey S. Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer. Lancet Oncol. 2015;16(9):e447–59. doi: 10.1016/S1470-2045(15)00246-6.CrossRefPubMedGoogle Scholar
  66. 66.
    Pereira NB, do Carmo AC, Diniz MG, Gomez RS, Gomes DA, Gomes CC. Nuclear localization of epidermal growth factor receptor (EGFR) in ameloblastomas. Oncotarget. 2015;6(12):9679–85. doi:10.18632/oncotarget.3919.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Della Corte CM, Bellevicine C, Vicidomini G, Vitagliano D, Malapelle U, Accardo M, et al. SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res. 2015;21(20):4686–97. doi: 10.1158/1078-0432.CCR-14-3319.CrossRefPubMedGoogle Scholar
  68. 68.
    Keysar SB, Le PN, Anderson RT, Morton JJ, Bowles DW, Paylor JJ, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res. 2013;73(11):3381–92. doi: 10.1158/0008-5472.CAN-12-4047.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Siar CH, Nagatsuka H, Han PP, Buery RR, Tsujigiwa H, Nakano K, et al. Differential expression of canonical and non-canonical Wnt ligands in ameloblastoma. J Oral Pathol Med. 2012;41(4):332–9. doi: 10.1111/j.1600-0714.2011.01104.x.CrossRefPubMedGoogle Scholar
  70. 70.
    Sekine S, Sato S, Takata T, Fukuda Y, Ishida T, Kishino M, et al. Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol. 2003;163(5):1707–12.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Miyake T, Tanaka Y, Kato K, Tanaka M, Sato Y, Ijiri R, et al. Gene mutation analysis and immunohistochemical study of beta-catenin in odontogenic tumors. Pathol Int. 2006;56(12):732–7. doi: 10.1111/j.1440-1827.2006.02039.x.CrossRefPubMedGoogle Scholar
  72. 72.
    Tanahashi J, Daa T, Yada N, Kashima K, Kondoh Y, Yokoyama S. Mutational analysis of Wnt signaling molecules in ameloblastoma with aberrant nuclear expression of beta-catenin. J Oral Pathol Med. 2008;37(9):565–70. doi: 10.1111/j.1600-0714.2008.00645.x.CrossRefPubMedGoogle Scholar
  73. 73.
    Siriwardena BS, Kudo Y, Ogawa I, Tilakaratne WM, Takata T. Aberrant beta-catenin expression and adenomatous polyposis coli gene mutation in ameloblastoma and odontogenic carcinoma. Oral Oncol. 2009;45(2):103–8. doi: 10.1016/j.oraloncology.2008.03.008.CrossRefPubMedGoogle Scholar
  74. 74.
    Alves Pereira KM, do Amaral BA, dos Santos BR, Galvao HC, Freitas Rde A, de Souza LB. Immunohistochemical expression of E-cadherin and beta-catenin in ameloblastomas and tooth germs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(3):425–31. doi: 10.1016/j.tripleo.2009.10.032.CrossRefPubMedGoogle Scholar
  75. 75.
    Cecim RL, Carmo HA, Kataoka MS, Freitas VM, de Melo Alves Junior S, Pedreira EN, et al. Expression of molecules related to AKT pathway as putative regulators of ameloblastoma local invasiveness. J Oral Pathol Med. 2014;43(2):143–7. doi: 10.1111/jop.12103.CrossRefPubMedGoogle Scholar
  76. 76.
    Bilodeau EA, Acquafondata M, Barnes EL, Seethala RR. A comparative analysis of LEF-1 in odontogenic and salivary tumors. Hum Pathol. 2015;46(2):255–9. doi: 10.1016/j.humpath.2014.10.018.CrossRefPubMedGoogle Scholar
  77. 77.
    Siar CH, Ishak I, Ng KH. Podoplanin, E-cadherin, beta-catenin, and CD44v6 in recurrent ameloblastoma: their distribution patterns and relevance. J Oral Pathol Med. 2015;44(1):51–8. doi: 10.1111/jop.12203.CrossRefPubMedGoogle Scholar
  78. 78.
    Hakim SG, Kosmehl H, Sieg P, Trenkle T, Jacobsen HC, Attila Benedek G, et al. Altered expression of cell-cell adhesion molecules beta-catenin/E-cadherin and related Wnt-signaling pathway in sporadic and syndromal keratocystic odontogenic tumors. Clin Oral Investig. 2011;15(3):321–8. doi: 10.1007/s00784-010-0388-8.CrossRefPubMedGoogle Scholar
  79. 79.
    Leonardi R, Matthews JB, Loreto C, Musumeci G, Campisi G, Lo Muzio L, et al. Beta-catenin and survivin expression in keratocystic odontogenic tumor (KCOT). A comparative immunohistochemical study in primary, recurrent and nevoid basal cell carcinoma syndrome (NBCCS)-associated lesions. Histol Histopathol. 2013;28(9):1175–84.PubMedGoogle Scholar
  80. 80.
    Hassanein AM, Glanz SM, Kessler HP, Eskin TA, Liu C. beta-Catenin is expressed aberrantly in tumors expressing shadow cells. Pilomatricoma, craniopharyngioma, and calcifying odontogenic cyst. Am J Clin Pathol. 2003;120(5):732–6. doi: 10.1309/EALE-G7LD-6W71-67PX.CrossRefPubMedGoogle Scholar
  81. 81.
    Ahn SG, Kim SA, Kim SG, Lee SH, Kim J, Yoon JH. Beta-catenin gene alterations in a variety of so-called calcifying odontogenic cysts. APMIS. 2008;116(3):206–11. doi: 10.1111/j.1600-0463.2008.00893.x.CrossRefPubMedGoogle Scholar
  82. 82.
    Camilli TC, Weeraratna AT. Striking the target in Wnt-y conditions: intervening in Wnt signaling during cancer progression. Biochem Pharmacol. 2010;80(5):702–11. doi: 10.1016/j.bcp.2010.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sukarawan W, Simmons D, Suggs C, Long K, Wright JT. WNT5A expression in ameloblastoma and its roles in regulating enamel epithelium tumorigenic behaviors. Am J Pathol. 2010;176(1):461–71. doi: 10.2353/ajpath.2010.090478.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Guimaraes DM, Antunes DM, Saturno JL, Massuda F, Paiva KB, Nunes FD. Immunohistochemical expression of WNT5A and MMPs in odontogenic epithelial tumors and cysts. Acta Histochem. 2015;117(8):667–74. doi: 10.1016/j.acthis.2015.10.006.CrossRefPubMedGoogle Scholar
  85. 85.
    Kibe T, Fuchigami T, Kishida M, Iijima M, Ishihata K, Hijioka H, et al. A novel ameloblastoma cell line (AM-3) secretes MMP-9 in response to Wnt-3a and induces osteoclastogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(6):780–8. doi: 10.1016/j.oooo.2013.03.005.CrossRefPubMedGoogle Scholar
  86. 86.
    Amm HM, Oliver PG, Lee CH, Li Y, Buchsbaum DJ. Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biol Ther. 2011;11(5):431–49.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Scheper MA, Chaisuparat R, Nikitakis NG, Sauk JJ. Expression and alterations of the PTEN / AKT / mTOR pathway in ameloblastomas. Oral Dis. 2008;14(6):561–8. doi: 10.1111/j.1601-0825.2007.01421.x.CrossRefPubMedGoogle Scholar
  88. 88.
    Chaisuparat R, Yodsanga S, Montaner S, Jham BC. Activation of the Akt/mTOR pathway in dentigerous cysts, odontogenic keratocysts, and ameloblastomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(3):336–42. doi: 10.1016/j.oooo.2013.06.013.CrossRefPubMedGoogle Scholar
  89. 89.
    Kumamoto H, Ooya K. Immunohistochemical detection of phosphorylated Akt, PI3K, and PTEN in ameloblastic tumors. Oral Dis. 2007;13(5):461–7. doi: 10.1111/j.1601-0825.2006.01321.x.CrossRefPubMedGoogle Scholar
  90. 90.
    Li N, Zhong M, Song M. Expression of phosphorylated mTOR and its regulatory protein is related to biological behaviors of ameloblastoma. Int J Clin Exp Pathol. 2012;5(7):660–7.PubMedPubMedCentralGoogle Scholar
  91. 91.
    McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014;5(10):2881–911. doi:10.18632/oncotarget.2037.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Rovida E, Stecca B. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: a crosstalk providing therapeutic opportunities? Semin Cancer Biol. 2015;35:154–67. doi: 10.1016/j.semcancer.2015.08.003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Oral Health ResearchUniversity of Alabama at Birmingham School of DentistryBirminghamUSA

Personalised recommendations