Current Oral Health Reports

, Volume 3, Issue 1, pp 56–63 | Cite as

What Are We Learning and What Can We Learn from the Human Oral Microbiome Project?

  • Benjamin Cross
  • Roberta C. Faustoferri
  • Robert G. QuiveyJr.Email author
Microbiology (M Klein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microbiology


Extraordinary technological advances in DNA sequencing have greatly accelerated our ability to identify bacteria, at the species level, present in clinical samples taken from the human mouth. In addition, mass spectrometry has evolved such that oral samples can be analyzed for protein and metabolic products, providing insight into bacterial interaction with their human hosts in the maintenance of oral health or the onset of disease. The ability to cost-effectively determine the DNA sequence of individuals, accompanied by their unique microbiome, heralds the advent of personalized dental medicine.


Microbiomes Oral health Oral disease Caries Periodontal disease Oral cancer 



This work was supported by the Training Program in Oral Sciences, NIH/NIDCR T90 DE021985 (B. C.), NIH/NIDCR DE013683, and DE017157 (R.G.Q.).

Compliance with Ethical Standards

Conflict of Interest

Benjamin Cross, Roberta C. Faustoferri, and Robert G. Quivey, Jr. declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Steele M. Obama to announce major personalized medicine initiative. US News & World Report Health Day. 2015.Google Scholar
  2. 2.
    Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Gamow G, Ycas M. Statistical correlation of protein and ribonucleic acid composition. Proc Natl Acad Sci U S A. 1955;41(12):1011–9.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins. Nature. 1961;192:1227–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Nirenberg MW, Matthaei JH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961;47:1588–602.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Matthaei JH, Jones OW, Martin RG, Nirenberg MW. Characteristics and composition of RNA coding units. Proc Natl Acad Sci U S A. 1962;48:666–77.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Last JA, Stanley Jr WM, Salas M, Hille MB, Wahba AJ, Ochoa S. Translation of the genetic message, IV. UAA as a chain termination codon. Proc Natl Acad Sci U S A. 1967;57(4):1062–7.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062.CrossRefPubMedGoogle Scholar
  10. 10.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10. doi: 10.1038/nature06244.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi: 10.1128/JB.00542-10.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69:137–43. doi: 10.1016/j.phrs.2012.11.006.CrossRefPubMedGoogle Scholar
  13. 13.
    Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Period. 2000;27(10):722–32.CrossRefGoogle Scholar
  14. 14.
    Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J Clin Period. 2000;27(9):648–57.CrossRefGoogle Scholar
  15. 15.
    Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005;43(8):3944–55. doi: 10.1128/JCM.43.8.3944-3955.2005.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Schlafer S, Riep B, Griffen AL, Petrich A, Hubner J, Berning M, et al. Filifactor alocis—involvement in periodontal biofilms. BMC Microbiol. 2010;10:66. doi: 10.1186/1471-2180-10-66.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J Clin Microbiol. 2006;44(10):3665–73. doi: 10.1128/JCM.00317-06.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Griffen AL, Becker MR, Lyons SR, Moeschberger ML, Leys EJ. Prevalence of Porphyromonas gingivalis and periodontal health status. J Clin Microbiol. 1998;36(11):3239–42.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Teles R, Sakellari D, Teles F, Konstantinidis A, Kent R, Socransky S, et al. Relationships among gingival crevicular fluid biomarkers, clinical parameters of periodontal disease, and the subgingival microbiota. J Period. 2010;81(1):89–98. doi: 10.1902/jop.2009.090397.CrossRefGoogle Scholar
  20. 20.
    Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, et al. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol. 2002;40(3):1001–9.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.•
    Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10):e47722. doi: 10.1371/journal.pone.0047722. Gross et al. provide a compelling argument that multiple species participate in the human disease known as dental caries and show that over time, mutans streptococci can become dominant members of the supragingival flora.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, Janies DA, et al. Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol. 2010;48(11):4121–8. doi: 10.1128/JCM.01232-10.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Griffen AL, Beall CJ, Firestone ND, Gross EL, Difranco JM, Hardman JH, et al. CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One. 2011;6(4):e19051. doi: 10.1371/journal.pone.0019051.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, et al. The oral metagenome in health and disease. ISME J. 2012;6:46–56. doi: 10.1038/ismej.2011.85.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Marsh PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38(3):204–11. doi: 10.1159/000077756.CrossRefPubMedGoogle Scholar
  26. 26.
    Marsh PD, Head DA, Devine DA. Ecological approaches to oral biofilms: control without killing. Caries Res. 2015;49:46–54. doi: 10.1159/000377732.CrossRefPubMedGoogle Scholar
  27. 27.
    Curtis MA, Zenobia C, Darveau RP. The relationship of the oral microbiotia to periodontal health and disease. Cell Host Microbe. 2011;10(4):302–6. doi: 10.1016/j.chom.2011.09.008.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259. doi: 10.1186/1471-2180-9-259.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Zaura E, ten Cate JM. Towards understanding oral health. Caries Res. 2015;49 Suppl 1:55–61. doi: 10.1159/000377733.CrossRefPubMedGoogle Scholar
  30. 30.
    Sutton SV, Marquis RE. Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis. J Dent Res. 1987;66(6):1095–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Bender GR, Sutton SV, Marquis RE. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Inf Immun. 1986;53(2):331–8.Google Scholar
  32. 32.
    Jagtap PD, Blakely A, Murray K, Stewart S, Kooren J, Johnson JE, et al. Metaproteomic analysis using the Galaxy framework. Proteomics. 2015;15(20):3553–65. doi: 10.1002/pmic.201500074.CrossRefPubMedGoogle Scholar
  33. 33.
    Rudney JD, Xie H, Rhodus NL, Ondrey FG, Griffin TJ. A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol Oral Microbiol. 2010;25(1):38–49. doi: 10.1111/j.2041-1014.2009.00558.x.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Lamont RJ, Meila M, Xia Q, Hackett M. Mass spectrometry-based proteomics and its application to studies of Porphyromonas gingivalis invasion and pathogenicity. Infect Dis Drug Targets. 2006;6(3):311–25.CrossRefGoogle Scholar
  35. 35.
    Xia Q, Hendrickson EL, Wang T, Lamont RJ, Leigh JA, Hackett M. Protein abundance ratios for global studies of prokaryotes. Proteomics. 2007;7(16):2904–19. doi: 10.1002/pmic.200700267.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Xia Q, Wang T, Taub F, Park Y, Capestany CA, Lamont RJ, et al. Quantitative proteomics of intracellular Porphyromonas gingivalis. Proteomics. 2007;7(23):4323–37. doi: 10.1002/pmic.200700543.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.•
    Edlund A, Yang Y, Yooseph S, Hall AP, Nguyen DD, Dorrestein PC, et al. Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism. ISME J. 2015. doi: 10.1038/ismej.2015.72. The wave of microbiome sequencing provided the evidence that the genomes of microbiota must also be considered in the context of the products produced by a given microbial population, which in turn influences the transcriptomes and, eventually, the microbiota present in a given microbial community. The term “omics” is fully developed in this tour de force of technology meeting the oral microbiome.PubMedGoogle Scholar
  38. 38.
    Zaura E. Next-generation sequencing approaches to understanding the oral microbiome. Adv Dent Res. 2012;24(2):81–5. doi: 10.1177/0022034512449466.CrossRefPubMedGoogle Scholar
  39. 39.
    Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012;18(2):109–20. doi: 10.1111/j.1601-0825.2011.01851.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Hart TC, Kornman KS. Genetic factors in the pathogenesis of periodontitis. Periodontol. 1997;14:202–15. doi: 10.1111/j.1600-0757.1997.tb00198.x.CrossRefGoogle Scholar
  41. 41.
    Hjorth JP. Genetic variation in mouse salivary amylase rate of synthesis. Biochem Genet. 1979;17:665–82. doi: 10.1007/BF00502125.CrossRefPubMedGoogle Scholar
  42. 42.
    Vieira AR, Marazita ML, Goldstein-McHenry T. Genome-wide scan finds suggestive caries loci. J Dent Res. 2008;87:435–9. doi: 10.1177/154405910808700506.CrossRefPubMedGoogle Scholar
  43. 43.
    Boraas JC, Messer LB, Till MJ. A genetic contribution to dental caries, occlusion, and morphology as demonstrated by twins reared apart. J Dent Res 2008. 1988;67:1150–5.Google Scholar
  44. 44.
    Conry JP, Messer LB, Boraas JC, Aeppli DP, Bouchard Jr TJ. Dental caries and treatment characteristics in human twins reared apart. Arch Oral Biol. 1993;38:937–43. doi: 10.1016/0003-9969(93)90106-V.CrossRefPubMedGoogle Scholar
  45. 45.•
    Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191. doi: 10.1186/s13059-015-0759-1. Blekhman et al. show clearly that the microbiome of the human host is in fact affected by the genome of that host, indicating a fluidity to what must considered the human “microbiome” across all humanity.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Gröschl M, Topf H-G, Kratzsch J, Dötsch J, Rascher W, Rauh M. Salivary leptin induces increased expression of growth factors in oral keratinocytes. J Mol Endocrinol. 2005;34:353–66. doi: 10.1677/jme.1.01658.CrossRefPubMedGoogle Scholar
  47. 47.
    La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immun. 2004;4:371–9. doi: 10.1038/nri1350.CrossRefGoogle Scholar
  48. 48.
    Fox CL, Pérez-Pérez A, Juan J. Dietary information through the examination of plant phytoliths on the enamel surface of human dentition. J Archaeol Sci. 1994;21:29–34. doi: 10.1006/jasc.1994.1005.CrossRefGoogle Scholar
  49. 49.
    Preus HR, Marvik OJ, Selvig KA, Bennike P. Ancient bacterial DNA (aDNA) in dental calculus from archaeological human remains. J Archaeol Sci. 2011;38:1827–31. doi: 10.1016/j.jas.2011.03.020.CrossRefGoogle Scholar
  50. 50.
    Warinner C, Speller C, Collins MJ. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Phil Trans Royal Soc London B Biol Sci. 2015;370:20130376. doi: 10.1098/rstb.2013.0376.CrossRefGoogle Scholar
  51. 51.
    Humphrey LT, De Groote I, Morales J, Barton N, Collcutt S, Bronk Ramsey C, et al. Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. Proc Natl Acad Sci U S A. 2014;111(3):954–9. doi: 10.1073/pnas.1318176111.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Roberts C. The Cambridge encyclopedia of human paleopathology. Med Hist. 2000;44:121–3.PubMedCentralGoogle Scholar
  53. 53.
    Burt BA. Influences for change in the dental health status of populations: an historical perspective. J Publ Health Dent. 1978;38:272–88. doi: 10.1111/j.1752-7325.1978.tb03753.x.CrossRefGoogle Scholar
  54. 54.
    Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet. 2013;45:450–5. doi: 10.1038/ng.2536.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol. 2005;38:135–87. doi: 10.1111/j.1600-0757.2005.00107.x.CrossRefGoogle Scholar
  56. 56.
    Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90(3):294–303. doi: 10.1177/0022034510379602.CrossRefPubMedGoogle Scholar
  57. 57.
    Group TNHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23. doi: 10.1101/gr.096651.109.CrossRefGoogle Scholar
  58. 58.
    Gendron R, Grenier D, Maheu-Robert L-F. The oral cavity as a reservoir of bacterial pathogens for focal infections. Microb Infect. 2000;2:897–906. doi: 10.1016/S1286-4579(00)00391-9.CrossRefGoogle Scholar
  59. 59.
    Fiehn NE, Gutschik E, Larsen T, Bangsborg JM. Identity of streptococcal blood isolates and oral isolates from two patients with infective endocarditis. J Clin Microbiol. 1995;33:1399–401.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Dajani AS, Taubert KA, Wilson W, Bolger AF, Bayer A, Ferrieri P, et al. Prevention of bacterial endocarditis recommendations by the American Heart Association. Circulation. 1997;96:358–66. doi: 10.1161/01.CIR.96.1.358.CrossRefPubMedGoogle Scholar
  61. 61.
    Duval X, Delahaye F, Alla F, Tattevin P, Obadia J-F, Le Moing V, et al. Temporal trends in infective endocarditis in the context of prophylaxis guideline modifications: three successive population-based surveys. J Am Coll Cardiol. 2012;59:1968–76. doi: 10.1016/j.jacc.2012.02.029.CrossRefPubMedGoogle Scholar
  62. 62.
    Gouriet F, Habib G, Raoult D. Infective endocarditis and antibiotic prophylaxis. Lancet. 2015;386:528. doi: 10.1016/S0140-6736(15)61466-0.CrossRefPubMedGoogle Scholar
  63. 63.
    Avilés-Reyes A, Miller JH, Simpson-Haidaris PJ, Hagen FK, Abranches J, Lemos JA. Modification of Streptococcus mutans Cnm by PgfS contributes to adhesion, endothelial cell invasion, and virulence. J Bact. 2014;196:2789–97. doi: 10.1128/JB.01783-14.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Nakano K, Nemoto H, Nomura R, Inaba H, Yoshioka H, Taniguchi K, et al. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol Immunol. 2009;24:64–8. doi: 10.1111/j.1399-302X.2008.00479.x.CrossRefPubMedGoogle Scholar
  65. 65.
    Paju S, Scannapieco FA. Oral biofilms, periodontitis, and pulmonary infections. Oral Dis. 2007;13:508–12. doi: 10.1111/j.1601-0825.2007.01410a.x.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Russell SL, Boylan RJ, Kaslick RS, Scannapieco FA, Katz RV. Respiratory pathogen colonization of the dental plaque of institutionalized elders. Spec Care Dent. 1999;19:128–34. doi: 10.1111/j.1754-4505.1999.tb01413.x.CrossRefGoogle Scholar
  67. 67.
    Han MK, Zhou Y, Murray S, Tayob N, Noth I, Lama VN, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Resp Med. 2014;2:548–56. doi: 10.1016/S2213-2600(14)70069-4.CrossRefGoogle Scholar
  68. 68.
    Kostic Aleksandar D, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen A-M, et al. The dynamics of the human infant gut microbiome in development and in progression toward Type 1 diabetes. Cell Host Microbe. 2015;17:260–73. doi: 10.1016/j.chom.2015.01.001.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23. doi: 10.1128/AEM.03022-05.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Rea MC, Dobson A, O’Sullivan O, Crispie F, Fouhy F, Cotter PD, et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A. 2011;108:4639–44. doi: 10.1073/pnas.1001224107.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Thomas C, Stevenson M, Riley TV. Antibiotics and hospital-acquired Clostridium difficile-associated diarrhoea: a systematic review. J Antimicrob Chem. 2003;51:1339–50. doi: 10.1093/jac/dkg254.CrossRefGoogle Scholar
  72. 72.
    Jorup-Rönström C, Håkanson A, Sandell S, Edvinsson O, Midtvedt T, Persson A-K, et al. Fecal transplant against relapsing Clostridium difficile-associated diarrhea in 32 patients. Scand J Gastroenterol. 2012;47:548–52. doi: 10.3109/00365521.2012.672587.CrossRefPubMedGoogle Scholar
  73. 73.
    Mattila E, Uusitalo-Seppälä R, Wuorela M, Lehtola L, Nurmi H, Ristikankare M, et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology. 2012;142:490–6. doi: 10.1053/j.gastro.2011.11.037.CrossRefPubMedGoogle Scholar
  74. 74.
    He X, McLean JS, Guo L, Lux R, Shi W. The social structure of microbial community involved in colonization resistance. ISME J. 2014;8:564–74. doi: 10.1038/ismej.2013.172.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Cavera VL, Arthur TD, Kashtanov D, Chikindas ML. Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents. 2015. doi: 10.1016/j.ijantimicag.2015.07.011.PubMedGoogle Scholar
  76. 76.
    Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A. 2007;104:7617–21. doi: 10.1073/pnas.0700440104.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Agyei D, Danquah MK. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotech Adv. 2011;29:272–7. doi: 10.1016/j.biotechadv.2011.01.001.CrossRefGoogle Scholar
  78. 78.
    Comelli EM, Guggenheim B, Stingele F, Neeser J-R. Selection of dairy bacterial strains as probiotics for oral health. Eur J Oral Sci. 2002;110:218–24. doi: 10.1034/j.1600-0447.2002.21216.x.CrossRefPubMedGoogle Scholar
  79. 79.
    Meurman J, Stamatova I. Probiotics: contributions to oral health. Oral Dis. 2007;13:443–51. doi: 10.1111/j.1601-0825.2007.01386.x.CrossRefPubMedGoogle Scholar
  80. 80.
    Wescombe PA, Heng NCK, Burton JP, Chilcott CN, Tagg JR. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 2009;4:819–35. doi: 10.2217/fmb.09.61.CrossRefPubMedGoogle Scholar
  81. 81.
    Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology. 2008;154(Pt 11):3247–55. doi: 10.1099/mic.0.2008/023770-0.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. AmBio. 2014;5:e01012–4. doi: 10.1128/mBio.01012-14.Google Scholar
  83. 83.
    Niederman R, Buyle-Bodin Y, Lu B-Y, Robinson P, Naleway C. Short-chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res. 1997;76:575–9. doi: 10.1177/00220345970760010801.CrossRefPubMedGoogle Scholar
  84. 84.
    Gupta S, Misra G, Khurana SMP. Bioinformatics: promises and progress. Int J Bioinform Res Appl. 2015;11:462–7. doi: 10.1504/IJBRA.2015.071945.CrossRefPubMedGoogle Scholar
  85. 85.
    Scholz MB, Lo C-C, Chain PS. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotech. 2012;23:9–15. doi: 10.1016/j.copbio.2011.11.013.CrossRefPubMedGoogle Scholar
  86. 86.
    The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. 2010;2010:baq013. doi: 10.1093/database/baq013.

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Benjamin Cross
    • 1
  • Roberta C. Faustoferri
    • 1
  • Robert G. QuiveyJr.
    • 1
    Email author
  1. 1.Eastman Institute for Oral Health, Center for Oral BiologyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations