Advertisement

Current Oral Health Reports

, Volume 3, Issue 1, pp 36–44 | Cite as

Polymicrobial Biofilm Studies: from Basic Science to Biofilm Control

  • Hubertine ME Willems
  • Zhenbo Xu
  • Brian M PetersEmail author
Microbiology (M Klein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microbiology

Abstract

Microbes rarely exist as single species planktonic forms as they have been commonly studied in the laboratory. Instead, the vast majority exists as part of complex polymicrobial biofilm communities attached to host and environmental surfaces. The oral cavity represents one of the most diverse and well-studied polymicrobial consortia. Despite a burgeoning field of mechanistic biofilm research within the past decades, our understanding of interactions that occur between microbial members within oral biofilms is still limited. Thus, the primary objective of this review is to focus on polymicrobial biofilm formation, microbial interactions and signaling events that mediate oral biofilm development, consequences of oral hygiene on both local and systemic disease, and potential therapeutic strategies to limit oral dysbiosis.

Keywords

Polymicrobial Multi-species Biofilm Microbiome Oral health Quorum sensing 

Notes

Compliance with Ethical Standards

Conflict of Interest

Hubertine ME Willems, Zhenbo Xu, and Brian M Peters declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Filoche S, Wong L, Sissons CH. Oral biofilms: emerging concepts in microbial ecology. J Dent Res. 2010;89(1):8–18. doi: 10.1177/0022034509351812.CrossRefPubMedGoogle Scholar
  2. 2.
    Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012;13(6):R42. doi: 10.1186/gb-2012-13-6-r42.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Simon-Soro A, Tomas I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res. 2013;92(7):616–21. doi: 10.1177/0022034513488119.CrossRefPubMedGoogle Scholar
  4. 4.
    Kleinberg I, Jenkins GN. The pH of dental plaques in the different areas of the mouth before and after meals and their relationship to the pH and rate of flow of resting saliva. Arch Oral Biol. 1964;9:493–516.CrossRefPubMedGoogle Scholar
  5. 5.
    Fejerskov O, Nyvad B, Larsen MJ. Human experimental caries models: intra-oral environmental variability. Adv Dent Res. 1994;8(2):134–43.PubMedGoogle Scholar
  6. 6.
    Jakubovics NS, Kolenbrander PE. The road to ruin: the formation of disease-associated oral biofilms. Oral Dis. 2010;16(8):729–39. doi: 10.1111/j.1601-0825.2010.01701.x.CrossRefPubMedGoogle Scholar
  7. 7.
    Kuboniwa M, Lamont RJ. Subgingival biofilm formation. Periodontol 2000. 2010;52(1):38–52. doi: 10.1111/j.1600-0757.2009.00311.x.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect. 2000;2(13):1599–607.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee YH, Zimmerman JN, Custodio W, Xiao Y, Basiri T, Hatibovic-Kofman S, et al. Proteomic evaluation of acquired enamel pellicle during in vivo formation. PLoS One. 2013;8(7):e67919. doi: 10.1371/journal.pone.0067919.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, et al. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol. 2010;77(2):276–86. doi: 10.1111/j.1365-2958.2010.07212.x.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Nobbs AH, Jenkinson HF, Everett DB. Generic determinants of Streptococcus colonization and infection. Infect Genet Evol. 2015;33:361–70. doi: 10.1016/j.meegid.2014.09.018.CrossRefPubMedGoogle Scholar
  12. 12.
    Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011;90(11):1271–8. doi: 10.1177/0022034511399096.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol. 2007;52(11):1048–56. doi: 10.1016/j.archoralbio.2007.05.006.CrossRefPubMedGoogle Scholar
  14. 14.
    Takeuchi H, Yamamoto K. Ultrastructural analysis of structural framework in dental plaque developing on synthetic carbonate apatite applied to human tooth surfaces. Eur J Oral Sci. 2001;109(4):249–59.CrossRefPubMedGoogle Scholar
  15. 15.
    Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer Jr RJ, et al. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol. 2006;72(4):2837–48. doi: 10.1128/AEM.72.4.2837-2848.2006.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Takeshita T, Yasui M, Shibata Y, Furuta M, Saeki Y, Eshima N, et al. Dental plaque development on a hydroxyapatite disk in young adults observed by using a barcoded pyrosequencing approach. Sci Rep. 2015;5:8136. doi: 10.1038/srep08136.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Xu H, Dongari-Bagtzoglou A. Shaping the oral mycobiota: interactions of opportunistic fungi with oral bacteria and the host. Curr Opin Microbiol. 2015;26:65–70. doi: 10.1016/j.mib.2015.06.002.CrossRefPubMedGoogle Scholar
  18. 18.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi: 10.1128/JB.00542-10.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hardie JM, Bowden GH. Bacterial flora of dental plaque. Br Med Bull. 1975;31(2):131–6.PubMedGoogle Scholar
  20. 20.
    Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80–7. doi: 10.1111/j.1600-0757.2006.00174.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 2015;17(7):505–16. doi: 10.1016/j.micinf.2015.03.014.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5):1016–25. doi: 10.1038/ismej.2012.174.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Mark Welch JL, Utter DR, Rossetti BJ, Mark Welch DB, Eren AM, Borisy GG. Dynamics of tongue microbial communities with single-nucleotide resolution using oligotyping. Front Microbiol. 2014;5:568. doi: 10.3389/fmicb.2014.00568.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 2008;4(2):e35. doi: 10.1371/journal.ppat.0040035.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    de Carvalho FG, Silva DS, Hebling J, Spolidorio LC, Spolidorio DM. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol. 2006;51(11):1024–8. doi: 10.1016/j.archoralbio.2006.06.001.CrossRefPubMedGoogle Scholar
  26. 26.•
    Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One. 2014;9(3):e90899. doi: 10.1371/journal.pone.0090899. One of only two studies to address the fungal species resident in the human mouth (also termed the “oral mycobiome”). Findings demonstrate that Malassezia, a common skin opportunistic pathogen, is a common colonizer of oral tissue. PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713. doi: 10.1371/journal.ppat.1000713.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69–86. doi: 10.1159/000324598.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn SJ, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol. 2014;196(13):2355–66. doi: 10.1128/JB.01493-14.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Svensater G, Borgstrom M, Bowden GH, Edwardsson S. The acid-tolerant microbiota associated with plaque from initial caries and healthy tooth surfaces. Caries Res. 2003;37(6):395–403. doi:73390.Google Scholar
  31. 31.
    Bowen WH. Dental caries—not just holes in teeth! A perspective. Mol Oral Microbiol. 2015. doi: 10.1111/omi.12132.PubMedGoogle Scholar
  32. 32.
    Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82(5):1968–81. doi: 10.1128/IAI.00087-14.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol. 1998;43(2):103–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Hannig C, Ruggeri A, Al-Khayer B, Schmitz P, Spitzmuller B, Deimling D, et al. Electron microscopic detection and activity of glucosyltransferase B, C, and D in the in situ formed pellicle. Arch Oral Biol. 2008;53(11):1003–10. doi: 10.1016/j.archoralbio.2008.04.005.CrossRefPubMedGoogle Scholar
  35. 35.
    Klinke T, Kneist S, de Soet JJ, Kuhlisch E, Mauersberger S, Forster A, et al. Acid production by oral strains of Candida albicans and Lactobacilli. Caries Res. 2009;43(2):83–91. doi: 10.1159/000204911.CrossRefPubMedGoogle Scholar
  36. 36.
    Zero DT, Fontana M, Martinez-Mier EA, Ferreira-Zandona A, Ando M, Gonzalez-Cabezas C, et al. The biology, prevention, diagnosis and treatment of dental caries: scientific advances in the United States. J Am Dent Assoc. 2009;140 Suppl 1:25S–34S.CrossRefPubMedGoogle Scholar
  37. 37.
    Islam B, Khan SN, Khan AU. Dental caries: from infection to prevention. Med Sci Monit. 2007;13(11):RA196–203.PubMedGoogle Scholar
  38. 38.
    Raja M, Hannan A, Ali K. Association of oral candidal carriage with dental caries in children. Caries Res. 2010;44(3):272–6. doi: 10.1159/000314675.CrossRefPubMedGoogle Scholar
  39. 39.
    Jarosz LM, Deng DM, van der Mei HC, Crielaard W, Krom BP. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell. 2009;8(11):1658–64. doi: 10.1128/EC.00070-09.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005;83(9):661–9. doi:/S0042-96862005000900011.Google Scholar
  41. 41.
    Sztajer H, Szafranski SP, Tomasch J, Reck M, Nimtz M, Rohde M, et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J. 2014;8(11):2256–71. doi: 10.1038/ismej.2014.73.CrossRefPubMedGoogle Scholar
  42. 42.
    Jin LJ, Armitage GC, Klinge B, Lang NP, Tonetti M, Williams RC. Global oral health inequalities: task group—periodontal disease. Adv Dent Res. 2011;23(2):221–6. doi: 10.1177/0022034511402080.CrossRefPubMedGoogle Scholar
  43. 43.
    Handfield M, Baker HV, Lamont RJ. Beyond good and evil in the oral cavity: insights into host-microbe relationships derived from transcriptional profiling of gingival cells. J Dent Res. 2008;87(3):203–23.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Offenbacher S, Barros SP, Paquette DW, Winston JL, Biesbrock AR, Thomason RG, et al. Gingival transcriptome patterns during induction and resolution of experimental gingivitis in humans. J Periodontol. 2009;80(12):1963–82. doi: 10.1902/jop.2009.080645.CrossRefPubMedGoogle Scholar
  45. 45.
    Sharma N, Charles CH, Lynch MC, Qaqish J, McGuire JA, Galustians JG, et al. Adjunctive benefit of an essential oil-containing mouthrinse in reducing plaque and gingivitis in patients who brush and floss regularly: a six-month study. J Am Dent Assoc. 2004;135(4):496–504.CrossRefPubMedGoogle Scholar
  46. 46.
    van der Weijden GA, Timmerman MF, Piscaer M, Snoek I, van der Velden U, Galgut PN. Effectiveness of an electrically active brush in the removal of overnight plaque and treatment of gingivitis. J Clin Periodontol. 2002;29(8):699–704.CrossRefPubMedGoogle Scholar
  47. 47.
    Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90. doi: 10.1038/nrmicro2337.CrossRefPubMedGoogle Scholar
  48. 48.
    Loesche W. Dental caries and periodontitis: contrasting two infections that have medical implications. Infect Dis Clin N Am. 2007;21(2):471–502. doi: 10.1016/j.idc.2007.03.006.CrossRefGoogle Scholar
  49. 49.
    Ramseier CA, Kinney JS, Herr AE, Braun T, Sugai JV, Shelburne CA, et al. Identification of pathogen and host-response markers correlated with periodontal disease. J Periodontol. 2009;80(3):436–46. doi: 10.1902/jop.2009.080480.CrossRefPubMedGoogle Scholar
  50. 50.
    Sheiham A. Is the chemical prevention of gingivitis necessary to prevent severe periodontitis? Periodontol 2000. 1997;15:15–24.CrossRefPubMedGoogle Scholar
  51. 51.
    Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ. New bacterial species associated with chronic periodontitis. J Dent Res. 2003;82(5):338–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Pozhitkov AE, Leroux BG, Randolph TW, Beikler T, Flemmig TF, Noble PA. Towards microbiome transplant as a therapy for periodontitis: an exploratory study of periodontitis microbial signature contrasted by oral health, caries and edentulism. BMC Oral Health. 2015;15(1):125. doi: 10.1186/s12903-015-0109-4.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Huang S, Li R, Zeng X, He T, Zhao H, Chang A, et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J. 2014;8(9):1768–80. doi: 10.1038/ismej.2014.32.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Beikler T, Prior K, Ehmke B, Flemmig TF. Specific antibiotics in the treatment of periodontitis—a proposed strategy. J Periodontol. 2004;75(1):169–75. doi: 10.1902/jop.2004.75.1.169.CrossRefPubMedGoogle Scholar
  55. 55.
    Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7(1):27. doi: 10.1186/s13073-015-0153-3-153.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Potera C. Forging a link between biofilms and disease. Science. 1999;283(5409):1837–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Papapanou PN. Systemic effects of periodontitis: lessons learned from research on atherosclerotic vascular disease and adverse pregnancy outcomes. Int Dent J. 2015. doi: 10.1111/idj.12185.PubMedGoogle Scholar
  58. 58.
    Lu Q, Jin L. Human gingiva is another site of C-reactive protein formation. J Clin Periodontol. 2010;37(9):789–96. doi: 10.1111/j.1600-051X.2010.01600.x.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen Z, Potempa J, Polanowski A, Wikstrom M, Travis J. Purification and characterization of a 50-kDa cysteine proteinase (gingipain) from Porphyromonas gingivalis. J Biol Chem. 1992;267(26):18896–901.PubMedGoogle Scholar
  60. 60.
    Kadowaki T, Nakayama K, Yoshimura F, Okamoto K, Abe N, Yamamoto K. Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis. J Biol Chem. 1998;273(44):29072–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000. 2010;54(1):15–44. doi: 10.1111/j.1600-0757.2010.00377.x.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002;4 Suppl 3:S265–S72.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Turesson C, McClelland RL, Christianson TJ, Matteson EL. Multiple extra-articular manifestations are associated with poor survival in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(11):1533–4. doi: 10.1136/ard.2006.052803.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Brown LJ, Loe H. Prevalence, extent, severity and progression of periodontal disease. Periodontol 2000. 1993;2:57–71.CrossRefPubMedGoogle Scholar
  65. 65.•
    Kharlamova N, Jiang X, Sherina N, Potempa B, Israelsson L, Quirke AM, et al. Antibodies to Porphyromonas gingivalis indicate interaction between oral infection, smoking and risk genes in rheumatoid arthritis etiology. Arthritis Rheum. 2015. doi: 10.1002/art.39491. Findings from this associative clinical study suggest that the periodontal pathogen Porphyromonas gingivalis drives production of anti-citrullinated protein antibodies (ACPA) linked with rheumatoid arthritis.
  66. 66.
    Rantapaa-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wadell G, Stenlund H, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 2003;48(10):2741–9. doi: 10.1002/art.11223.CrossRefPubMedGoogle Scholar
  67. 67.
    Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation. 2004;28(6):311–8. doi: 10.1007/s10753-004-6641-z.CrossRefPubMedGoogle Scholar
  68. 68.
    Trevisan M, Dorn J. The relationship between periodontal disease (pd) and cardiovascular disease (cvd). Mediterr J Hematol Infect Dis. 2010;2(3):e2010030. doi: 10.4084/MJHID.2010.030.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Oktay S, Chukkapalli SS, Rivera-Kweh MF, Velsko IM, Holliday LS, Kesavalu L. Periodontitis in rats induces systemic oxidative stress that is controlled by bone-targeted antiresorptives. J Periodontol. 2015;86(1):137–45. doi: 10.1902/jop.2014.140302.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Paquette DW, Brodala N, Nichols TC. Cardiovascular disease, inflammation, and periodontal infection. Periodontol 2000. 2007;44:113–26. doi: 10.1111/j.1600-0757.2006.00196.x.CrossRefPubMedGoogle Scholar
  71. 71.
    Gangula P, Ravella K, Chukkapalli S, Rivera M, Srinivasan S, Hale A, et al. Polybacterial periodontal pathogens alter vascular and gut BH4/nNOS/NRF2-phase II enzyme expression. PLoS One. 2015;10(6):e0129885. doi: 10.1371/journal.pone.0129885.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.•
    Reichert S, Schlitt A, Beschow V, Lutze A, Lischewski S, Seifert T, et al. Use of floss/interdental brushes is associated with lower risk for new cardiovascular events among patients with coronary heart disease. J Periodontal Res. 2015;50(2):180–8. doi: 10.1111/jre.12191. Findings from this study suggest that flossing and brushing of interdental spaces may reduce the incidence of future cardiovascular event among patients with coronary heart disease, further emphasizing the role of oral pathogens in systemic disease. CrossRefPubMedGoogle Scholar
  73. 73.•
    Serra e Silva Filho W, Casarin RC, Nicolela Jr EL, Passos HM, Sallum AW, Goncalves RB. Microbial diversity similarities in periodontal pockets and atheromatous plaques of cardiovascular disease patients. PLoS One. 2014;9(10):e109761. doi: 10.1371/journal.pone.0109761. The objective of this study was to use 16S-based sequencing approaches to examine the microbial diversity in the subgingival plaque and atheroma plaques of patients with gingivitis and coronary artery atherosclerosis. Microbial compositions between these anatomical sites were highly conserved, further suggesting that oral plaque may translocate to seed infection at distant biological sites. PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Velsko IM, Chukkapalli SS, Rivera MF, Lee JY, Chen H, Zheng D, et al. Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis. PLoS One. 2014;9(5):e97811. doi: 10.1371/journal.pone.0097811PONE-D-13-52626.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Janket SJ, Javaheri H, Ackerson LK, Ayilavarapu S, Meurman JH. Oral infections, metabolic inflammation, genetics, and cardiometabolic diseases. J Dent Res. 2015;94(9 Suppl):119S–27S. doi: 10.1177/0022034515580795.CrossRefPubMedGoogle Scholar
  76. 76.•
    Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hansch GM, Filler SG, et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology. 2015;161(Pt 1):168–81. doi: 10.1099/mic.0.083485-0. Findings from this study revealed that the under-represented oral colonizer, Staphylococcus aureus, can utilize the invasive hyphal filaments of the common oral fungus Candida albicans to disseminate and cause lethal systemic staphylococcal infection in a murine model. This study builds on the growing appreciation for fungi and bacteria to interact in vivo, often resulting in infectious synergism.
  77. 77.
    Peters BM, Ovchinnikova ES, Krom BP, Schlecht LM, Zhou H, Hoyer LL, et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology. 2012;158(Pt 12):2975–86. doi: 10.1099/mic.0.062109-0.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Temoin S, Chakaki A, Askari A, El-Halaby A, Fitzgerald S, Marcus RE, et al. Identification of oral bacterial DNA in synovial fluid of patients with arthritis with native and failed prosthetic joints. J Clin Rheumatol. 2012;18(3):117–21. doi: 10.1097/RHU.0b013e3182500c95.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Anbinder AL, Moraes RM, Lima GM, Oliveira FE, Campos DR, Rossoni RD, et al. Periodontal disease exacerbates systemic ovariectomy-induced bone loss in mice. Bone. 2015. doi: 10.1016/j.bone.2015.11.014.PubMedGoogle Scholar
  80. 80.
    Benedyk M, Mydel PM, Delaleu N, Plaza K, Gawron K, Milewska A, et al. Gingipains: critical factors in the development of aspiration pneumonia caused by Porphyromonas gingivalis. J Innate Immun. 2015. doi: 10.1159/000441724.PubMedGoogle Scholar
  81. 81.
    Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108. doi: 10.1038/nrmicro821.CrossRefPubMedGoogle Scholar
  82. 82.
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8(1):15–25. doi: 10.1038/nrmicro2259.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 2003;11(2):94–100.CrossRefPubMedGoogle Scholar
  84. 84.
    Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6(3):199–210. doi: 10.1038/nrmicro1838.CrossRefPubMedGoogle Scholar
  85. 85.
    Leung V, Dufour D, Levesque CM. Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide. Front Microbiol. 2015;6:1176. doi: 10.3389/fmicb.2015.01176.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009;43:197–222. doi: 10.1146/annurev-genet-102108-134304.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Jack AA, Daniels DE, Jepson MA, Vickerman MM, Lamont RJ, Jenkinson HF, et al. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiology. 2015;161(Pt 2):411–21. doi: 10.1099/mic.0.000010.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Scheres N, Lamont RJ, Crielaard W, Krom BP. LuxS signaling in Porphyromonas gingivalis-host interactions. Anaerobe. 2015;35(Pt A):3–9. doi: 10.1016/j.anaerobe.2014.11.011.CrossRefPubMedGoogle Scholar
  89. 89.
    Bachtiar EW, Bachtiar BM, Jarosz LM, Amir LR, Sunarto H, Ganin H, et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Front Cell Infect Microbiol. 2014;4:94. doi: 10.3389/fcimb.2014.00094.PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Jang YJ, Sim J, Jun HK, Choi BK. Differential effect of autoinducer 2 of Fusobacterium nucleatum on oral streptococci. Arch Oral Biol. 2013;58(11):1594–602. doi: 10.1016/j.archoralbio.2013.08.006.CrossRefPubMedGoogle Scholar
  91. 91.
    Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21(3):172–83. doi: 10.1016/j.molmed.2014.11.004.CrossRefPubMedGoogle Scholar
  92. 92.
    Hans M, Madaan Hans V. Epithelial antimicrobial peptides: guardian of the oral cavity. Int J Pept. 2014;2014:370297. doi: 10.1155/2014/370297.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Kasper SH, Samarian D, Jadhav AP, Rickard AH, Musah RA, Cady NC. S-aryl-L-cysteine sulphoxides and related organosulphur compounds alter oral biofilm development and AI-2-based cell-cell communication. J Appl Microbiol. 2014;117(5):1472–86. doi: 10.1111/jam.12616.CrossRefPubMedGoogle Scholar
  94. 94.
    Ryan EM, Gorman SP, Donnelly RF, Gilmore BF. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol. 2011;63(10):1253–64. doi: 10.1111/j.2042-7158.2011.01324.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hubertine ME Willems
    • 1
  • Zhenbo Xu
    • 3
  • Brian M Peters
    • 1
    • 2
    Email author
  1. 1.Department of Clinical Pharmacy, College of PharmacyUniversity of Tennessee Health Sciences CenterMemphisUSA
  2. 2.Department of Microbiology, Immunology, and BiochemistryUniversity of Tennessee Health Sciences CenterMemphisUSA
  3. 3.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina

Personalised recommendations