Advertisement

Current Pharmacology Reports

, Volume 5, Issue 5, pp 359–376 | Cite as

A Systematic Review of Renal Function Estimation Equations

  • Nadia Z. Noormohamed
  • Wei Gao
  • Matthew L. Rizk
Pharmacometrics and Quantitative System Pharmacology (A Chakraborty and S Polak, Section Editors)
  • 26 Downloads
Part of the following topical collections:
  1. Topical Collection on Pharmacometrics and Quantitative System Pharmacology

Abstract

Purpose of Review

This review summarizes the development of various renal function estimation equations and their use in the clinical and drug development space today. We provide a review of recent literature published regarding their concordance and accuracy as compared to measured renal function by way of creatinine clearance (CrCl) or glomerular filtration rate (GFR) in staging chronic kidney disease (CKD) and dose adjusting renally eliminated drugs.

Recent Findings

The choice of specific renal function estimation equations has been a topic of much debate. While clinical guidelines are continuously updated, product labels contain potentially different recommendations. Overall, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) are found to have higher concordance with one another than either equation with Cockcroft-Gault (CG). Although many studies assessing the accuracy of estimation equations found CKD-EPI to be closest to measured GFR, most labs are still reporting CG and MDRD as an assessment of renal function. Each of these equations have been developed in different patient populations and include different variables which makes it critical to understand and address potential discrepancies when using them to stage patients with CKD or dose adjust renally eliminated drugs.

Summary

An understanding of the development and accuracy of renal function estimation equations is required to use them appropriately in clinic. As clinical and drug development guidelines continue to be updated and new products are undergoing development, further study is required to come to some agreement regarding the use of these equations in both environments.

Keywords

Renal function Chronic kidney disease Cockcroft-gault Modified diet in renal disease Chronic kindey disease epidemiology 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors received no financial support in the writing of this manuscript. All authors are employees of Merck & Co., Inc. The opinions expressed in this publication are those of the authors and do not necessarily reflect those of the company who employs them.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rahman M, Shad F, Smith MC (2012) Acute kidney injury: a guide to diagnosis and management. Am Fam Physician 86(7):631–639Google Scholar
  2. 2.
    Inker LA, Astor BC, Fox CH, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2002(63):S1–S266.Google Scholar
  3. 3.
    United States Renal Data System. 2018 USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health. National Institute of Diabetes and Digestive and Kidney Diseases. Bethesda, MD. 2018.Google Scholar
  4. 4.
    National Kidney Foundation. http://www.kidney.org (2015). Accessed 15 Apr 2019.
  5. 5.
    Traynor J, Mactier R, Geddes CC, Fox JG. How to measure renal function in clinical practice. Br Med J. 2006;333:733–7.  https://doi.org/10.1136/bmj.38975.390370.7C.CrossRefGoogle Scholar
  6. 6.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3:1–150.CrossRefGoogle Scholar
  7. 7.
    Lopez-Giacoman S, Madero M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J Nephrol. 2015;4(1):57–73.  https://doi.org/10.5527/wjn.v4.i1.57.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.  https://doi.org/10.1053/ajkd.2002.34487.CrossRefPubMedGoogle Scholar
  9. 9.
    Orlando R, Floreani M, Padrini R, Palatini P. Determination of inulin clearance by bolus intravenous injection in healthy subjects and ascitic patients: equivalence of systemic and renal clearances as glomerular filtration markers. Br J Clin Pharmacol. 1998;46:605–9.  https://doi.org/10.1046/j.1365-2125.1998.00824.x.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Medeiros F, Sapienza MT, Prado ES, et al. Validation of plasma clearance of 51CR-EDTA in adult renal transplant recipients: comparison with inulin clearance. Transplant Int. 2009;22(3):323–31.  https://doi.org/10.1111/j.1432-2277.2008.00799.x.CrossRefGoogle Scholar
  11. 11.
    Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64:411–24.  https://doi.org/10.1053/j.ajkd.2014.04.010.CrossRefPubMedGoogle Scholar
  12. 12.
    Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: how to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016;9:682–99.  https://doi.org/10.1093/ckj/sfw070.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Agarwal R, Bills JE, Yigazu PM, Abraham T, Gizaw AB, Light RP, et al. Assessment of iothalamate plasma clearance: duration of study affects quality of GFR. Clin J Am Soc Nephrol. 2009;4:77–85.  https://doi.org/10.2215/CJN.03720708.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the national kidney disease education program. Clin Chem. 2006;52:5–18.  https://doi.org/10.1373/clinchem.2005.0525144.CrossRefPubMedGoogle Scholar
  15. 15.
    Miller WG, Myers GL, Ashwood ER, et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med. 2005;129:297–304.  https://doi.org/10.1043/1543-2165(2005)129<297:CMSOTA>2.0.CO;2.CrossRefPubMedGoogle Scholar
  16. 16.
    Delanghe JR, Cobbaert C, Galteau MM, Harmoinen A, Jansen R, Kruse R, et al. Trueness verification of actual creatinine assays in the European market demonstrates a disappointing variability that needs substantial improvement. An international study in the framework of the EC4 creatinine standardization working group. Clin Chem Lab Med. 2008;46:1319–25.  https://doi.org/10.1515/CCLM.2008.256.CrossRefPubMedGoogle Scholar
  17. 17.
    Piéroni L, Delanaye P, Boutten A, Bargnoux AS, Rozet E, Delatour V, et al. A multicentric evaluation of IDMS-traceable creatinine enzymatic assays. Clinica Chemica Acta. 2011;412(23–24):2070–5.  https://doi.org/10.1016/j.cca.2011.07.012.CrossRefGoogle Scholar
  18. 18.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70.CrossRefPubMedGoogle Scholar
  20. 20.
    Levey AS, Coresh J, Greene T, Stevens LA, Zhang Y(L), Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–54.CrossRefGoogle Scholar
  21. 21.
    Levey AS, Stevens LA, Schmid CH, Zhang Y(L), Castro AF III, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Moller E, McIntosh JF, Van Slyke DD. Studies of urea excretion. II: relationship between urine volume and the rate of urea excretion by normal adults. J Clin Invest 1928:6(3):427–465. Doi:  https://doi.org/10.1172/JCI100206/.
  23. 23.
    Heaf JG. The origin of the 1 × 73-m2 body surface area normalization: problems and implications. Clin Physiol Funct Imaging. 2007;27(3):135–7.  https://doi.org/10.1111/j.1475-097X.2006.00718.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Geddes CC, Woo YM, Brady S. Glomerular filtration rate—what is the rationale and justification of normalizing GFR for body surface area? Nephrol Dial Transplant. 2008;23(1):4–6.  https://doi.org/10.1093/ndt/gfm662.CrossRefPubMedGoogle Scholar
  25. 25.
    Redal-Baigorri B, Rasmussen K, Heaf JG. The use of absolute values improves performance of estimation formulae: a retrospective cross sectional study. BMC Nephrol. 2013;14:271.  https://doi.org/10.1186/1471-2369-14-271.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Redal-Baigorri B, Rasmussen K, Heaf JG. Indexing glomerular filtration rate to body surface area: clinical consequences. J Clin Lab Anal. 2014;28(2):83–90.  https://doi.org/10.1002/jcla.21648.CrossRefPubMedGoogle Scholar
  27. 27.
    Delanaye P, Krzesinski JM. Indexing renal function parameters by body surface area: intelligence or folly? Nephron Clin Pract. 2011;119:c289–92.  https://doi.org/10.1159/000330276.CrossRefPubMedGoogle Scholar
  28. 28.
    Anastasio P, Spitali L, Frangiosa A, Molino D, Stellato D, Cirillo E, et al. Glomerular filtration rate in severely overweight normotensive humans. Am J Kidney Dis. 2000;35(6):1144–8.  https://doi.org/10.1016/S0272-6386(00)70052-7.CrossRefPubMedGoogle Scholar
  29. 29.
    Accetta NA, Gladstone EH, DiSigora C, et al. Prevalence of estimated GFR reporting among US clinical laboratories. Am J Kidney Dis. 2008;52(4):778–87.  https://doi.org/10.1053/j.ajkd.2008.05.023.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Crass RL, Pai MP. Estimating renal function in drug development: time to take the fork in the road. J Clin Pharmacol. 2019;59(2):159–67.  https://doi.org/10.1002/jcph.1314.CrossRefPubMedGoogle Scholar
  31. 31.
    Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry: pharmacokinetics in patients with impaired renal function—study design, data analysis, and impact on dosing and labeling. 2010. https://www.fda.gov/downloads/drugs/guidances/ucm204959.pdf. Accessed January 17, 2019.
  32. 32.
    European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function. 2016. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/02/WC500200841.pdf. Accessed May 9, 2018.
  33. 33.
    Al-Wakeel JS. Accuracy and precision of the CKD-EPI and MDRD predictive equations compared with glomerular filtration rate measured by inulin clearance in a Saudi population. Ann Saudi Med. 2016;36(2):128–34.  https://doi.org/10.5144/0256-4947.2016.28.3.1715.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Burballa C, Crespo M. Redondo-Pachón, et al. MDRD or CKD-EPI for glomerular filtration rate estimation in living kidney donors. Nefrologia. 2018;38(2):207–12.  https://doi.org/10.1016/j.nefro.2017.02.007.CrossRefPubMedGoogle Scholar
  35. 35.
    Dantec A, Selistre L, Lemoine S, Buron F, de Souza VC, Rimmelé T, et al. Performances of creatinine-based glomerular filtration rate estimating equations in simultaneous pancreas-kidney transplant recipients: a single center cohort study. Transpl Int. 2019;32(1):75–83.  https://doi.org/10.1111/tri.13333.CrossRefPubMedGoogle Scholar
  36. 36.
    Dou Y, Sun X, Liu D, Zhang L, Xiao J, Cheng G, et al. Accuracy of glomerular filtration rate equations for chronic kidney disease patients at the G3a stage: a single-center cross-sectional study. BMC Res Notes. 2017;10(1):107.  https://doi.org/10.1186/s13104-017-2400-8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Funakoshi Y, Fujiwara Y, Kiyota N, Mukohara T, Shimada T, Toyoda M, et al. Validity of new methods to evaluate renal function in cancer patients treated with cisplatin. Cancer Chemother Pharmacol. 2016 Feb;77(2):281–8.  https://doi.org/10.1007/s00280-016-2966-1.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Giglio D. A new equation for estimating glomerular filtration rate in cancer patients. Chemotherapy. 2014;60(1):63–72.  https://doi.org/10.1159/000365724.CrossRefPubMedGoogle Scholar
  39. 39.
    Jalalonmuhali M, Peng N, Kun L. Comparative performance of creatinine-based estimated glomerular filtration rate equations in the Malays: a pilot study in tertiary hospital in Malaysia. Int J Nephrol. 2017;2017:2901581–7.  https://doi.org/10.1155/2017/2901581.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jalalonmuhali M, Lim SK, Md Shah MN, Ng KP. MDRD vs. CKD-EPI in comparison to 51Chromium EDTA: a cross sectional study of Malaysian CKD cohort. BMC Nephrol. 2017;18(1):363.  https://doi.org/10.1186/s12882-017-0776-2.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kakde S, Alexander S, David VG, Jacob S, Mohapatra A, Valson AT, et al. Relationship of creatinine and cystatin C-based estimated glomerular filtration rates with measured glomerular filtration rate in healthy kidney donors from South Asia. Indian J Nephrol. 2018;28(5):345–50.  https://doi.org/10.4103/ijn.IJN_249_17.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lindberg L, K Brødbæk, Hägerström EG, et al. Comparison of methods for estimating glomerular filtration rate in head and neck cancer patients treated with cisplatin. Scand J Clin Lab Invest 2017:77(4):237–246. Doi:  https://doi.org/10.1080/00365513.2017.1298001.
  43. 43.
    Moodley N, Hariparshad S, Peer F, Gounden V. Evaluation of the CKD-EPI creatinine based glomerular filtration rate estimating equation in Black African and Indian adults in KwaZulu-Natal, South Africa. Clin Biochem. 2018;59:43–9.  https://doi.org/10.1016/j.clinbiochem.2018.06.014.CrossRefPubMedGoogle Scholar
  44. 44.
    David-Neto E, Triboni AH, Ramos F, et al. Evaluation of MDRD4, CKD-EPI, BIS-1, and modified Cockcroft-Gault equations to estimate glomerular filtration rate in the elderly renal-transplanted recipients. Clin Transpl. 2016;30(12):1558–63.  https://doi.org/10.1111/ctr.12857.CrossRefGoogle Scholar
  45. 45.
    • Schwandt A, Denkinger M, Fasching P, et al. Comparison of MDRD, CKD-EPI, and Cockcroft-Gault equation in relation to measured glomerular filtration rate among a large cohort with diabetes. J Diabetes Complications. 2017;31(9):1376–83.  https://doi.org/10.1016/j.jdiacomp.2017.06.016 This study provided a comparison of three renal function estimation equations in a large cohort of patients in which CKD is commonly found. CrossRefPubMedGoogle Scholar
  46. 46.
    van Rijn M, Metzger M, Flamant M, et al. Performance of creatinine-based equations for estimating glomerular filtration rate changes over time. Nephrol Dial Transplant. 2018:1–9.  https://doi.org/10.1093/ndt/gfy278.
  47. 47.
    Vega A, García de Vinuesa S, Goicoechea M, et al. Evaluation of methods based on creatinine and cystatin C to estimate glomerular filtration rate in chronic kidney disease. Int Urol Nephrol. 2014;46(6):1161–7.  https://doi.org/10.1007/s11255-013-0607-8.CrossRefPubMedGoogle Scholar
  48. 48.
    Bustos-Guadaño F, Martín-Calderón JL, Criado-Álvarez JJ, Muñoz-Jara R, Cantalejo-Gutiérrez A, Mena-Moreno MC. Glomerular filtration rate estimation in people older than 85: comparison between CKD-EPI, MDRD-IDMS and BIS1 equations. Nefrologia. 2017;37(2):172–80.  https://doi.org/10.1016/j.nefro.2016.10.026.CrossRefPubMedGoogle Scholar
  49. 49.
    Chudek J, Kolonko A, Owczarek AJ, Wieczorowska-Tobis K, Broczek K, Skalska A, et al. Clinical factors increasing discrepancies of renal function assessment with MDRD and Cockcroft–Gault equations in old individuals. Eur Geriatr Med. 2018;9(5):713–20.  https://doi.org/10.1007/s41999-018-0076-9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cristelli MP, Cofán F, Rico N, et al. Estimation of renal function by CKD-EPI versus MDRD in a cohort of HIV-infected patients: a cross-sectional analysis. BMC Nephrol. 2017;18(1):58.  https://doi.org/10.1186/s12882-017-0470-4.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Czyżewski Ł, Wyzgał J, Czyżewska E, Kurowski A, Sierdziński J, Łabuś A, et al. Performance of the MDRD, CKD-EPI, and Cockcroft-Gault formulas in relation to nutritional status in stable renal transplant recipients. Transplant Proc. 2016 Jun;48(5):1494–7.  https://doi.org/10.1016/j.transproceed.2016.01.083.CrossRefPubMedGoogle Scholar
  52. 52.
    Dinsa H, Teshome N, Berha AB. Concordance between modification of diet in renal disease, chronic kidney disease epidemiology collaboration and Cockcroft-Gault equations in patients with chronic kidney disease at St. Paul’s hospital millennium medical college, Addis Ababa, Ethiopia. BMC Nephrol. 2017;18(1):368.  https://doi.org/10.1186/s12882-017-0783-3.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Guerville F, Roubaud-Baudron C, Duc S, Salles N, Rainfray M, Bourdel-Marchasson I. Discrepancy between equations estimating kidney function in geriatric care: a study of implications for drug prescription. Drugs Aging. 2019;36(2):155–63.  https://doi.org/10.1007/s40266-018-0618-3.CrossRefPubMedGoogle Scholar
  54. 54.
    Guo M, Niu JY, Ye XW, Han XJ, Zha Y, Hong Y, et al. Evaluation of various equations for estimating renal function in elderly Chinese patients with type 2 diabetes mellitus. Clin Interv Aging. 2017 Oct 9;12:1661–72.  https://doi.org/10.2147/CIA.S140289.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Higdon EA, Kimmons LA, Duhart BT Jr, Hudson JQ. Disagreement in estimates of kidney function for drug dosing in obese inpatients. J Pharm Pract. 2019;32(1):41–7.  https://doi.org/10.1177/0897190017737895.CrossRefPubMedGoogle Scholar
  56. 56.
    Hirst JA, Montes MDV, Taylor CJ, et al. Impact of a single eGFR and eGFR-estimating equation on chronic kidney disease reclassification: a cohort study in primary care. Br J Gen Pract. 2018;68(673):e524–30.  https://doi.org/10.3399/bjgp18X697937.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Houlind MB, Petersen KK, Palm H, et al. Creatinine-based renal function estimates and dosage of postoperative pain management for elderly acute hip fracture patients. Pharmaceuticals (Basel). 2018;11(3):E88.  https://doi.org/10.3390/ph11030088.CrossRefGoogle Scholar
  58. 58.
    Khanal A, Peterson GM, Jose MD, Castelino RL. Comparison of equations for dosing of medications in renal impairment. Nephrology (Carlton). 2017;22(6):470–7.  https://doi.org/10.1111/nep.12834.CrossRefGoogle Scholar
  59. 59.
    Malavasi VL, Pettorelli D, Fantecchi E, Zoccali C, Laronga G, Trenti T, et al. Variations in clinical management of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation according to different equations for estimating renal function: post hoc analysis of a prospective cohort. Intern Emerg Med. 2018 Oct;13(7):1059–67.  https://doi.org/10.1007/s11739-018-1857-3.CrossRefPubMedGoogle Scholar
  60. 60.
    Omuse G, Maina D, Mwangi J, et al. Comparison of equations for estimating glomerular filtration rate in screening for chronic kidney disease in asymptomatic black Africans: a cross sectional study. BMC Nephrol. 2017;18(1):369.  https://doi.org/10.1186/s12882-017-0788-y.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Han Q-X, Dong Z, Zhao Y-L, et al. Analysis of chronic kidney disease staging with different estimated glomerular filtration rate equations in Chinese centenarians. Chin Med J. 2019;132(5):512–8.  https://doi.org/10.1097/CM9.0000000000000079.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rhee J, Kwon JM, Han SH, et al. Cockcroft-Gault, Modification of Diet in Renal Disease, and Chronic Kidney Disease Epidemiology Collaboration equations for estimating glomerular filtration rates in cancer patients receiving cisplatin-based chemotherapy. Kidney Res Clin Pract. 2017;36(4):342–8.  https://doi.org/10.23876/j.krcp.2017.36.4.342.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Uche CL, Osegbe ID. Comparison of CKD-EPI versus MDRD and Cockcroft-Gault equations to estimate glomerular filtration rate among stable homozygous sickle cell patients in Southwest Nigeria. Niger J Clin Pract. 2017;20(7):816–21.  https://doi.org/10.4103/1119-3077.212441.CrossRefPubMedGoogle Scholar
  64. 64.
    Yan C, Wu B, Zeng M, Yang G, Ouyang C, Zhang B, et al. Comparison of different equations for estimated glomerular filtration rate in Han Chinese patients with chronic kidney disease. Clin Nephrol. 2019;91(5):301–10.  https://doi.org/10.5414/CN109420.CrossRefPubMedGoogle Scholar
  65. 65.
    Zaman SB. Detection of chronic kidney disease by using different equations of glomerular filtration rate in patients with type 2 diabetes mellitus: a cross-sectional analysis. Cureus. 2017;9(6):e1352.  https://doi.org/10.7759/cureus.1352.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Indicator details: estimating equations used by laboratories reporting eGFR. https://nccd.cdc.gov/ckd/detail.aspx?QNum=Q226. (Accessed 20 Jan 2019).
  67. 67.
    •• Andrade JG, Hawkins NM, Fordyce CB, et al. Variability in non-vitamin K antagonist Oral anticoagulants dose adjustment in atrial fibrillation patients with renal dysfunction: the influence of renal function estimation formulae. Can J Cardiol. 2018;34(8):1010–8.  https://doi.org/10.1016/j.cjca.2018.04.019 This article compared three estimation equations in predicting clearance of oral anticoagulants and provided a summary of the importance of finding the most accurate equation for a specific drug. CrossRefPubMedGoogle Scholar
  68. 68.
    •• Palacio-Lacambra ME, Comas-Reixach I, Blanco-Grau A, et al. Comparison of the Cockcroft–Gault, MDRD and CKD-EPI equations for estimating ganciclovir clearance. Br J Clin Pharmacol. 2018;84(9):2120–8.  https://doi.org/10.1111/bcp.13647 This article compared three estimation equations in predicting ganciclovir clearance and provided a summary of the importance of finding the most accurate equation for a specific drug. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Vancocin (vancomycin) [package insert]. Baudette, MN: ANI Pharmaceuticals; 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Quantitative Pharmacology & Pharmacometrics (QP2), PPDMMerck & Co., Inc.KenilworthUSA
  2. 2.North WalesUSA

Personalised recommendations