Advertisement

Current Pharmacology Reports

, Volume 5, Issue 2, pp 79–86 | Cite as

Role of Reactive Oxygen Species in Cancer Progression

  • Dharambir Kashyap
  • Hardeep Singh TuliEmail author
  • Katrin Sak
  • Vivek Kumar Garg
  • Neelam Goel
  • Sandeep Punia
  • Ashun Chaudhary
Chemical and Molecular Toxicology (J Bolton, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Chemical and Molecular Toxicology

Abstract

Purpose of Review

Although there are significant improvements in diagnosis and therapeutics tools, cancer remained a major cause of deaths in developing and developed countries. Among others, endogenously or exogenously generating reactive oxygen species (ROSs) are considered a crucial cause for tumor initiation, development, and survival. Unhealthy lifestyle, exposure to various carcinogens, ionizing radiations, and chemotherapy drugs are the main factors for ROS production.

Recent Findings

Reactive oxygen species cause genetic instability due to DNA damage or mutation load. Exposer to ROS also modulates the expression of various transcription factors such as Sp1, AP1, and NF-κβ implicated in proliferation, metastasis, and cancer stem cell maintenance. It is suggested that ROSs are involved in various cancer-related process including apoptosis, angiogenesis, metastasis, and inflammation. Numerous data from several studies suggest ROS as one of the therapeutic targets for cancer prevention and cure.

Summary

The current review summarizing the interactions of ROSs with various cellular molecules involved in angiogenesis, metastasis, and inflammation.

Keywords

Reactive oxygen species Angiogenesis Metastasis Inflammation Carcinogenesis 

Notes

Acknowledgments

Author would like to acknowledge Department of Histopathology, Postgraduate Institute of Medical Education (PGIMER), Chandigarh, India, and MMDU, Mullana, India, for supporting this study.

Compliance with Ethical Standards

Conflict of Interest

None declared.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Kashyap D, Sharma A, Garg V, Tuli HS, Kumar G, Kumar M. Reactive oxygen species (ROS): an activator of apoptosis and autophagy in cancer. J Biol Chem Sci. 2016;3:256–64.Google Scholar
  2. 2.
    Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7:504–11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Urao N, Inomata H, Razvi M, Kim HW, Wary K, McKinney R. Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res NIH Public Access; 2008;103:212–20.Google Scholar
  4. 4.
    Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol Elsevier; 2014. p. R453–62.Google Scholar
  5. 5.
    Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813–24.Google Scholar
  6. 6.
    Rendic S, Guengerich FP. Summary of information on the effects of ionizing and non-ionizing radiation on cytochrome P450 and other drug metabolizing enzymes and transporters. Curr Drug Metab. 2012;13:787–814.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008. p. 37–52.Google Scholar
  8. 8.
    Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7–15.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–67.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog Medknow Publications; 2006;5:14.Google Scholar
  11. 11.
    Bray F, Ferlay MEJ, Soerjomataram S, Siegel RL, Torre LA, Jemal A, et al. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424394.CrossRefGoogle Scholar
  12. 12.
    Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Tuli HS, Kashyap D, Sharma AK. Cordycepin: a cordyceps metabolite with promising therapeutic potential. Fungal Metab Cham: Springer International Publishing; 2015. p. 1–22.Google Scholar
  14. 14.
    Panieri E, Santoro M. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis Nature Publishing Group; 2016;7:1–12.Google Scholar
  15. 15.
    Bal, A., Joshi, K., Das, A., Kashyap, D., & Singh, G. Significance of epithelial-mesenchymal transition (EMT) in breast cancer and implications on lymph node metastasis. Mod Pathol; laboratory investigation 2015, 95 34A-34A.Google Scholar
  16. 16.
    Coussens LM, Werb Z. Inflammation and cancer. Nature NIH Public Access; 2002; 420:860–7.Google Scholar
  17. 17.
    Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006:123–30.Google Scholar
  18. 18.
    Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16:1295–322.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 2016;146:201–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Kashyap D, Kumar G, Sharma A, Sak K, Tuli HS, Mukherjee TK. Mechanistic insight into carnosol-mediated pharmacological effects: recent trends and advancements. Life Sci. 2017;169:27–36.CrossRefPubMedGoogle Scholar
  21. 21.
    Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumor Biol Tumor Biology. 2016;37:12927–39.  https://doi.org/10.1007/s13277-016-5184-x.CrossRefPubMedGoogle Scholar
  22. 22.
    Kashyap D, Sharma A, Tuli HS, Punia S, Sharma AK. Ursolic acid and oleanolic acid: pentacyclic terpenoids with promising anti-inflammatory activities. Recent Patents Inflamm Allergy Drug Discov. 2016, Vol. 10, No. 1.Google Scholar
  23. 23.
    Giercksky KE. COX-2 inhibition and prevention of cancer. Best Pract Res Clin Gastroenterol. 2001;15:821–33.CrossRefPubMedGoogle Scholar
  24. 24.
    Mazhar D, Ang R, Waxman J. COX inhibitors and breast cancer. Br J Cancer. 2006;94:346–50.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo KT, Manseau EJ. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res. 1996;56:172–81.PubMedGoogle Scholar
  26. 26.
    Senger DR, Brown LF, Claffey KP, Dvorak HF. Vascular permeability factor, tumor angiogenesis and stroma generation. Invasion Metastasis. 1994;14:385–94.Google Scholar
  27. 27.
    Singh H, Kashyap D, Sharma AK, Singh S. Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci. 2015;147:–157.Google Scholar
  28. 28.
    Chen X, Qian Y, Wu S. The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med. 2015;79:253–29.CrossRefPubMedGoogle Scholar
  29. 29.
    Tuli HS, Kashyap D, Sharma AK, Sandhu SS. Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci. 2015. p. 147–57.Google Scholar
  30. 30.
    Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 2018;194:75–87.CrossRefPubMedGoogle Scholar
  31. 31.
    Kashyap D, Sharma A, Tk M, Hs T. Quercetin and ursolic acid : dietary moieties with promising role in tumor cell cycle arrest. Austin Oncol. 2016;1:1–6.Google Scholar
  32. 32.
    Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008;8:425–37.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling. Role of NAD(P)H oxidase. Mol Cell Biochem. 2004;264:85–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;794–814.Google Scholar
  36. 36.
    Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007;67:10823–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Liu Y, Cui Y, Shi M, Zhang Q, Wang Q, Chen X. Deferoxamine promotes MDA-MB-231 cell migration and invasion through increased ROS-dependent HIF-1α accumulation. Cell Physiol Biochem. 2014;33:1036–46.CrossRefPubMedGoogle Scholar
  38. 38.
    Jing Y, Liu LZ, Jiang Y, Zhu Y, Guo NL, Barnett J. Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci. 2012;125:10–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu L-Z, Hu X-W, Xia C, He J, Zhou Q, Shi X. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med. 2006;41:1521–33.CrossRefPubMedGoogle Scholar
  40. 40.
    Govindarajan B, Sligh JE, Vincent BJ, Li M, Canter JA, Nickoloff BJ. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest. 2007;117:719–29.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rigiracciolo DC, Scarpelli A, Lappano R, Pisano A, Santolla MF, De Marco P. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget. 2015:34158–77.Google Scholar
  42. 42.
    Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35:32–46.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim YM, Kim KE, Koh GY, Ho YS, Lee KJ. Hydrogen peroxide produced by angiopoietin-mediates angiogenesis. Cancer Res. 2006;66:6167–74.CrossRefPubMedGoogle Scholar
  44. 44.
    Coso S, Harrison I, Harrison CB, Vinh A, Sobey CG, Drummond GR, et al. NADPH oxidases as regulators of tumor angiogenesis: current and emerging concepts. Antioxid Redox Signal. 2012;16:1229–47.CrossRefPubMedGoogle Scholar
  45. 45.
    Sauer H, Wartenberg M. Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal. 2005;7:1423–34.CrossRefPubMedGoogle Scholar
  46. 46.
    Khromova N V., Kopnin PB, Stepanova E V., Agapova LS, Kopnin BP. p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett. Elsevier Ireland Ltd; 2009;276:143–51.Google Scholar
  47. 47.
    Han X, Sun S, Zhao M, Cheng X, Chen G, Lin S. Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ros/akt/p70s6k signaling pathway and enhancing hypoxia-inducible factor-1α protein synthesis. PLoS One. 2014;9:e112470.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res NIH Public Access; 2010;44:479–96.Google Scholar
  49. 49.
    Komatsu D, Kato M, Nakayama J, Miyagawa S, Kamata T. NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene. 2008;27:4724–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Rabbani ZN, Spasojevic I, Zhang X, Moeller BJ, Haberle S, Vasquez-Vivar J. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP5+, via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med. 2009;47:992–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sarkar R, Mukherjee S, Biswas J, Roy M. Phenethyl isothiocyanate, by virtue of its antioxidant activity, inhibits invasiveness and metastatic potential of breast cancer cells: HIF-1α as a putative target. Free Radic Res. 2015;5762:1–17.Google Scholar
  52. 52.
    Tuli HS, Kashyap D, Bedi SK, Kumar P, Kumar G, Sandhu SS. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci. 2015;143:71–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013;93:863–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Kashyap D, Mondal R, Tuli HS, Kumar G, Sharma AK. Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumor Biol. 2016;3277–016–5194-8.Google Scholar
  55. 55.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Shin DH, Dier U, Melendez JA, Hempel N. Regulation of MMP-1 expression in response to hypoxia is dependent on the intracellular redox status of metastatic bladder cancer cells. Biochim Biophys Acta. 1852;2015:2593–602.Google Scholar
  57. 57.
    Nishikawa M. Reactive oxygen species in tumor metastasis. Cancer Lett. 2008;266:53–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DMS. Molecular interactions in cancer cell metastasis. Acta Histochem. 2010;112:3–25.CrossRefPubMedGoogle Scholar
  59. 59.
    Kamiya T, Goto A, Kurokawa E, Hara H, Adachi T. Cross talk mechanism among EMT, ROS, and histone acetylation in phorbol ester-treated human breast cancer MCF-7 cells. Oxid Med Cell Longev. 2016;2016:1–11.Google Scholar
  60. 60.
    Yang J, Li TZ, Xu GH, Luo BB, Chen YX, Zhang T. Low-concentration capsaicin promotes colorectal cancer metastasis by triggering ROS production and modulating Akt/mTOR and STAT-3 pathways. Neoplasma. 2013;60:364–72.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang B, Liu Z, Hu X. Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Biochem Pharmacol. 2013;86:253–66.CrossRefPubMedGoogle Scholar
  62. 62.
    Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med. 2004;37:768–84.CrossRefPubMedGoogle Scholar
  63. 63.
    Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y. Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res. 2009;69:2375–83.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shinohara M, Adachi Y, Mitsushita J, Kuwabara M, Nagasawa A, Harada S. Reactive oxygen generated by NADPH oxidase 1 (Nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J Biol Chem. 2010;285:4481–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Tobar N, Villar V, Santibanez JF. ROS-NFκΒ mediates TGF-β1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9, and cell invasion. Mol Cell Biochem. 2010;340:195–202.CrossRefPubMedGoogle Scholar
  66. 66.
    Ruma IMW, Putranto EW, Kondo E, Murata H, Watanabe M, Huang P. MCAM, as a novel receptor for S100A8/A9, mediates progression of malignant melanoma through prominent activation of NF-κB and ROS formation upon ligand binding. Clin Exp Metastasis. 2016;33:609–27.CrossRefPubMedGoogle Scholar
  67. 67.
    Hu Y, He K, Wang D, Yuan X, Liu Y, Ji H. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways. Carcinogenesis. 2013;34:1764–72.CrossRefPubMedGoogle Scholar
  68. 68.
    Kim EY, Seo JM, Kim C, Lee JE, Lee KM, Kim JH. BLT2 promotes the invasion and metastasis of aggressive bladder cancer cells through a reactive oxygen species-linked pathway. Free Radic Biol Med. 2010;49:1072–81.CrossRefPubMedGoogle Scholar
  69. 69.
    Lee KH, Kim SW, Kim J-R. Reactive oxygen species regulate urokinase plasminogen activator expression and cell invasion via mitogen-activated protein kinase pathways after treatment with hepatocyte growth factor in stomach cancer cells. J Exp Clin Cancer Res. 2009;28:73.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Binker MG, Binker-Cosen AA, Richards D, Oliver B, Cosen-Binker LI. EGF promotes invasion by PANC-1 cells through Rac1/ROS-dependent secretion and activation of MMP-2. Biochem Biophys Res Commun. 2009;379:445–50.CrossRefPubMedGoogle Scholar
  71. 71.
    Jiao L, Li DD, Yang CL, Peng RQ, Guo YQ, Zhang XS, et al. Reactive oxygen species mediate oxaliplatin-induced epithelial-mesenchymal transition and invasive potential in colon cancer. Tumor Biol 2016;1–11.Google Scholar
  72. 72.
    Guo J, Xu Y, Ji W, Song L, Dai C, Zhan L. Effects of exposure to benzo [a] pyrene on metastasis of breast cancer are mediated through ROS-ERK-MMP9 axis signaling. Toxicol Lett. 2015;234:201–10.CrossRefPubMedGoogle Scholar
  73. 73.
    Kang X, Kong F, Wu X, Ren Y, Wu S, Wu K. High glucose promotes tumor invasion and increases metastasis-associated protein expression in human lung epithelial cells by upregulating heme oxygenase-1 via reactive oxygen species or the TGF-β1/PI3K/akt signaling pathway. Cell Physiol Biochem. 2015;35:1008–22.CrossRefPubMedGoogle Scholar
  74. 74.
    Liu X, Pei C, Yan S, Liu G, Liu G, Chen W. NADPH oxidase 1-dependent ROS is crucial for TLR4 signaling to promote tumor metastasis of non-small cell lung cancer. Tumor Biol. 2015;36:1493–502.CrossRefGoogle Scholar
  75. 75.
    Wang P, Zeng Y, Liu T, Zhang C, Yu P-W, Hao Y-X. Chloride intracellular channel 1 regulates colon cancer cell migration and invasion through ROS/ER pathway. World J Gastroenterol. 2014;20:2071–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Liu J, Ben QW, Yao WY, Zhang JJ, Chen DF, He XY, Li L, Yuan YZ. BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK. Front Biosci. 2012. p. 2541.Google Scholar
  77. 77.
    Cho KH, Choi MJ, Jeong KJ, Kim JJ, Hwang MH, Shin SC. A ROS/STAT3/HIF-1α signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion. Prostate. 2014;74:528–36.CrossRefPubMedGoogle Scholar
  78. 78.
    Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene. 2006;25:3689–98.CrossRefPubMedGoogle Scholar
  79. 79.
    Ho BY, Wu YM, Chang KJ, Pan TM. Dimerumic acid inhibits sw620 cell invasion by attenuating H 2O 2-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int J Biol Sci. 2011;7:869–80.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Noh EM, Park YJ, Kim JM, Kim MS, Kim HR, Song HK, et al. Fisetin regulates TPA-induced breast cancer cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathway. Eur J Pharmacol. 2015;764:79–86.CrossRefPubMedGoogle Scholar
  81. 81.
    Sun M, Hong S, Li W, Wang P, You J, Zhang X. MIR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4. Oncol Rep. 2016;35:2755–66.CrossRefPubMedGoogle Scholar
  82. 82.
    Aung HH, Altman R, Nyunt T, Kim J, Nuthikattu S, Budamagunta M, et al. Induction of lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways. J Lipid Res. 2016;57:1–47.CrossRefGoogle Scholar
  83. 83.
    PahwaRoma, JialalIshwarlal. Hyperglycemia induces Toll-like receptor activity through increased oxidative stress. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2016;Google Scholar
  84. 84.
    Jeitner TM, Kalogiannis M, Krasnikov BF, Gomlin I, Peltier MR, Moran GR. Linking inflammation and Parkinson disease: hypochlorous acid generates parkinsonian poisons. Toxicol Sci. 2016;151:388–402.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hold GL, El-Omar EM. Genetic aspects of inflammation and cancer. Biochem J. 2008;410:225–35.CrossRefPubMedGoogle Scholar
  86. 86.
    Yu AM, Calvo JA, Muthupalani S, Samson LD, Yu AM, Calvo JA. The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury. Oncotarget. 2016;7:28624–36.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Hsing CH, Wang JJ. Clinical implication of perioperative inflammatory cytokine alteration. Acta Anaesthesiol Taiwanica. 2015;53:23–8.CrossRefGoogle Scholar
  88. 88.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2016:1–11.Google Scholar
  90. 90.
    Miyajima A, Kitamura T, Harada N, Yokota T, Arai K. Cytokine receptors and signal transduction. Annu Rev Immunol. 1992;10:295–331.CrossRefPubMedGoogle Scholar
  91. 91.
    Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol. 1997;24:287–96.CrossRefPubMedGoogle Scholar
  92. 92.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.CrossRefPubMedGoogle Scholar
  93. 93.
    Huang D, Fang F, Xu F. Hyperoxia induces inflammation and regulates cytokine production in alveolar epithelium through TLR2/4-NF-κB-dependent mechanism. Eur Rev Med Pharmacol Sci. 2016;20:1399–410.PubMedGoogle Scholar
  94. 94.
    Segal AW. How superoxide production by neutrophil leukocytes kills microbes. Innate Immun. to Pulm. Infect. 2008. p. 92–100.Google Scholar
  95. 95.
    Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNF-alpha in pulmonary pathophysiology. Respir Res. 2006;7:125.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Guo RM, Xu WM, Lin JC, Mo LQ, Hua XX, Chen PX. Activation of the p38 MAPK/NF-??B pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells. Mol Med Rep. 2013;8:603–8.CrossRefPubMedGoogle Scholar
  97. 97.
    Giri DK, Aggarwal BB. Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. J Biol Chem. 1998;273:14008–14.CrossRefPubMedGoogle Scholar
  98. 98.
    Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254:439–59.CrossRefPubMedGoogle Scholar
  99. 99.
    Rosin MP, Saad el Din Zaki S, Ward AJ, Anwar WA. Involvement of inflammatory reactions and elevated cell proliferation in the development of bladder cancer in schistosomiasis patients. Mutat Res. 1994;305:283–92.CrossRefPubMedGoogle Scholar
  100. 100.
    Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990;76:655–63.PubMedGoogle Scholar
  101. 101.
    Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther. 1992;53:127–66.CrossRefPubMedGoogle Scholar
  102. 102.
    Azad NY, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/ nitrogen species. J Toxicol Environ Health B Crit Rev. 2008;11:1–15.CrossRefPubMedGoogle Scholar
  103. 103.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  104. 104.
    Chen R, Alvero AB, Silasi DA, Kelly MG, Fest S, Visintin I, et al. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene. 2008;27:4712–23.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66:3859–68.CrossRefPubMedGoogle Scholar
  106. 106.
    Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J, et al. Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol. 2003;23:2362–78.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Li Z, Xia L, Lee LM, Khaletskiy A, Wang J, Wong JY, et al. Effector genes altered in MCF-7 human breast cancer cells after exposure to fractionated ionizing radiation. Radiat Res. 2001;155:543–53.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dharambir Kashyap
    • 1
  • Hardeep Singh Tuli
    • 2
    Email author
  • Katrin Sak
    • 3
  • Vivek Kumar Garg
    • 4
  • Neelam Goel
    • 5
  • Sandeep Punia
    • 2
  • Ashun Chaudhary
    • 2
  1. 1.Department of HistopathologyPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
  2. 2.Department of BiotechnologyM.M. (Deemed to be University), MulanaAmbalaIndia
  3. 3.NGOPraeventioTartuEstonia
  4. 4.Department of NeurologyPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
  5. 5.Department of Information TechnologyUniversity Institute of Engineering and Technology, Panjab UniversityChandigarhIndia

Personalised recommendations