A model of NSCLC microenvironment predicts optimal receptor targets

  • Chuang Han
  • Yu WuEmail author
Research Article



Tumor microenvironment plays an essential role in the growth of malignancy. Understanding how tumor cells co-evolve with tumor-associated immune cells and stromal cells is important for tumor treatment.


In this paper, we propose a logistic population dynamics model for quantifying the intercellular signaling network in non-small-cell lung cancer (NSCLC). The model describes the evolutionary dynamics of cells and signaling proteins and was used to predict effective receptor targets through combination strategy analysis. Then, we optimized a multi-target strategy analysis algorithm that was verified by applying it to virtual patients with heterogeneous conditions. Furthermore, to deal with acquired resistance which was commonly observed in patients with NSCLC, we proposed a novel targeting strategy — tracking targeted therapy, to optimize the treatment by improving the therapeutic strategy periodically.


The synergistic effect when inhibiting multiple signaling pathways may help significantly retard carcinogenic processes associated with disease progression, compared with suppression of a single signaling pathway. While traditional treatment (surgery, radiotherapy and chemotherapy) tends to attack tumor cells directly, the multi-target therapy we suggested here is aimed to inhibit the development of tumor by emasculating the relative competitive advantages of tumor cells and promoting that of normal cells.


The combination of traditional and targeted therapy, as an interesting experiment, was significantly more effective in treatment of virtual patients due to a clear complementary relationship between the two therapeutic schemes.


non-small-cell lung cancer tumor microenvironment intercellular signaling network logistic population dynamics drug resistance multi-target therapy 



We acknowledge the supports from the National Natural Science Foundation of China (Nos. 11402227, 11621062 and 11432012), the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4034), and the Thousand Young Talents Program of China.

Supplementary material

40484_2019_171_MOESM1_ESM.pdf (139 kb)
Supplementary Table S1. Three patients with difference in secretion rate parameters
40484_2019_171_MOESM2_ESM.pdf (17 kb)
Supplementary Table S2. x-axis parameter panels of Fig. 7
40484_2019_171_MOESM3_ESM.pdf (197 kb)
Supplementary Table S3. The dynamic patient with difference in regulation ratio parameters and secretion rate parameters
40484_2019_171_MOESM4_ESM.pdf (269 kb)
Supplementary Table S4
40484_2019_171_MOESM5_ESM.pdf (750 kb)
Supplementary Table S5. Deterministic Parameters
40484_2019_171_MOESM6_ESM.pdf (656 kb)
I. Supporting Methods


  1. 1.
    Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, B., Mariotto, A., Lake, A. J., Wilson, R., Sherman, R. L., et al. (2017) Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival. J. Natl. Cancer Inst., 109, 22CrossRefGoogle Scholar
  2. 2.
    Langer, C. J., Besse, B., Gualberto, A., Brambilla, E. and Soria, J.-C. (2010) The evolving role of histology in the management of advanced non-small-cell lung cancer. J. Clin. Oncol., 28, 5311–5320CrossRefGoogle Scholar
  3. 3.
    Leong, D., Rai, R., Nguyen, B., Lee, A. and Yip, D. (2014) Advances in adjuvant systemic therapy for non-small-cell lung cancer. World J. Clin. Oncol., 5, 633–645CrossRefGoogle Scholar
  4. 4.
    Weinberg, R. A. (2008) Coevolution in the tumor microenvironment. Nat. Genet., 40, 494–495CrossRefGoogle Scholar
  5. 5.
    Villanueva, M. T. (2014) Microenvironment: the new midfielders in the tumour microenvironment. Nat. Rev. Cancer, 14, 765CrossRefGoogle Scholar
  6. 6.
    Pietras, K. and Ostman, A. (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res., 316, 1324–1331CrossRefGoogle Scholar
  7. 7.
    El-Nikhely, N., Larzabal, L., Seeger, W., Calvo, A. and Savai, R. (2012) Tumor-stromal interactions in lung cancer: novel candidate targets for therapeutic intervention. Expert Opin. Investig. Drugs, 21, 1107–1122CrossRefGoogle Scholar
  8. 8.
    Lee, G., Walser, T. C. and Dubinett, S. M. (2009) Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr. Opin. Pulm. Med., 15, 303–307CrossRefGoogle Scholar
  9. 9.
    Sautès-Fridman, C., Cherfils-Vicini, J., Damotte, D., Fisson, S., Fridman, W. H., Cremer, I. and Dieu-Nosjean, M.-C. (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev., 30, 13–25CrossRefGoogle Scholar
  10. 10.
    Saffiotti, U., Daniel, L. N., Mao, Y., Shi, X., Williams, A. O. and Kaighn, M. E. (1994) Mechanisms of carcinogenesis by crystalline silica in relation to oxygen radicals. Environ. Health Perspect., 102, 159–163Google Scholar
  11. 11.
    Coggins, C. R. E. (2010) A further review of inhalation studies with cigarette smoke and lung cancer in experimental animals, including transgenic mice. Inhal. Toxicol., 22, 974–983CrossRefGoogle Scholar
  12. 12.
    Druker, B. J., Talpaz, M., Resta, D. J., Peng, B., Buchdunger, E., Ford, J. M., Lydon, N. B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., et al. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 344, 1031–1037CrossRefGoogle Scholar
  13. 13.
    Pennell, N. A. and Lynch, T. J. Jr. (2009) Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. Oncologist, 14, 399–411CrossRefGoogle Scholar
  14. 14.
    Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., Lilenbaum, R. and Johnson, D. H. (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med., 355, 2542–2550CrossRefGoogle Scholar
  15. 15.
    Zou, W. (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer, 5, 263–274CrossRefGoogle Scholar
  16. 16.
    Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C.-M., Zhao, X., Christensen, J., et al. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043CrossRefGoogle Scholar
  17. 17.
    Yao, Z., Fenoglio, S., Gao, D. C., Camiolo, M., Stiles, B., Lindsted, T., Schlederer, M., Johns, C., Altorki, N., Mittal, V., et al. (2010) TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl. Acad. Sci. USA, 107, 15535–15540CrossRefGoogle Scholar
  18. 18.
    Lange, J. M. A. (1995) Triple combinations: present and future. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 10, S77–S82CrossRefGoogle Scholar
  19. 19.
    Ward, J. P. and King, J. R. (1997) Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol., 14, 39–69CrossRefGoogle Scholar
  20. 20.
    Ward, J. P. and King, J. R. (1999) Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol., 16, 171–211CrossRefGoogle Scholar
  21. 21.
    Breward, C. J. W., Byrne, H. M. and Lewis, C. E. (2002) The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol., 45, 125–152CrossRefGoogle Scholar
  22. 22.
    Breward, C. J. W., Byrne, H. M. and Lewis, C. E. (2003) A multiphase model describing vascular tumour growth. Bull. Math. Biol., 65, 609–640CrossRefGoogle Scholar
  23. 23.
    Araujo, R. P. and McElwain, D. L. S. (2005) A mixture theory for the genesis of residual stresses in growing tissues I: A general formulation. SIAM J. Appl. Math., 65, 1261–1284CrossRefGoogle Scholar
  24. 24.
    Araujo, R. P. and McElwain, D. L. S. (2005) A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations for a multicell spheroid. SIAM J. Appl. Math., 66, 447–467CrossRefGoogle Scholar
  25. 25.
    Macklin, P. and Lowengrub, J. (2007) Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol., 245, 677–704CrossRefGoogle Scholar
  26. 26.
    Wise, S. M., Lowengrub, J. S., Frieboes, H. B. and Cristini, V. (2008) Three-dimensional multispecies nonlinear tumor growth-I Model and numerical method. J. Theor. Biol., 253, 524–543CrossRefGoogle Scholar
  27. 27.
    Macklin, P., McDougall, S., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V. and Lowengrub, J. (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58, 765–798CrossRefGoogle Scholar
  28. 28.
    Frieboes, H. B., Jin, F., Chuang, Y.-L., Wise, S. M., Lowengrub, J. S. and Cristini, V. (2010) Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis. J. Theor. Biol., 264, 1254–1278CrossRefGoogle Scholar
  29. 29.
    Hawkins-Daarud, A., van der Zee, K. G. and Oden, J. T. (2012) Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng., 28, 3–24CrossRefGoogle Scholar
  30. 30.
    Chen, Y. and Lowengrub, J. S. (2014) Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach. J. Theor. Biol., 361, 14–30CrossRefGoogle Scholar
  31. 31.
    Albano, G., Giorno, V., Román-Román, P., Román-Román, S. and Torres-Ruiz, F. (2015) Estimating and determining the effect of a therapy on tumor dynamics by means of a modified Gompertz diffusion process. J. Theor. Biol., 364, 206–219CrossRefGoogle Scholar
  32. 32.
    Al-Mamun, M. A., Farid, D. M., Ravenhil, L., Hossain, M. A., Fall, C. and Bass, R. (2016) An in silico model to demonstrate the effects of Maspin on cancer cell dynamics. J. Theor. Biol., 388, 37–49CrossRefGoogle Scholar
  33. 33.
    Ng, C. F. and Frieboes, H. B. (2017) Model of vascular desmoplastic multispecies tumor growth. J. Theor. Biol., 430, 245–282CrossRefGoogle Scholar
  34. 34.
    Schreiber, H. and Rowley, D. A. (2010) Cancer. Awakening immunity. Science, 330, 761–762Google Scholar
  35. 35.
    Ma, J., Liu, L., Che, G., Yu, N., Dai, F. and You, Z. (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer, 10, 112CrossRefGoogle Scholar
  36. 36.
    Spira, A. and Ettinger, D. S. (2004) Multidisciplinary management of lung cancer. N. Engl. J. Med., 350, 379–392CrossRefGoogle Scholar
  37. 37.
    Abulaiti, A., Shintani, Y., Funaki, S., Nakagiri, T., Inoue, M., Sawabata, N., Minami, M. and Okumura, M. (2013) Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-β signaling by IL-6. Lung Cancer, 82, 204–213CrossRefGoogle Scholar
  38. 38.
    Anderson, A. R. A., Weaver, A. M., Cummings, P. T. and Quaranta, V. (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127, 905–915CrossRefGoogle Scholar
  39. 39.
    Bremnes, R. M., Camps, C. and Sirera, R. (2006) Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer, 51, 143–158CrossRefGoogle Scholar
  40. 40.
    Tlsty, T. D. and Coussens, L. M. (2006) Tumor stroma and regulation of cancer development. Annu. Rev. Pathol., 1, 119–150CrossRefGoogle Scholar
  41. 41.
    Polyak, K., Haviv, I. and Campbell, I. G. (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet., 25, 30–38CrossRefGoogle Scholar
  42. 42.
    Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674CrossRefGoogle Scholar
  43. 43.
    Wistuba, I. I., Behrens, C., Virmani, A. K., Mele, G., Milchgrub, S., Girard, L., Fondon, J. W. 3rd, Garner, H. R., McKay, B., Latif, F., et al. (2000) High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res., 60, 1949–1960Google Scholar
  44. 44.
    Sánchez-Martín, L., Estecha, A., Samaniego, R., Sánchez-Ramón, S., Vega, M. Á. and Sánchez-Mateos, P. (2011) The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood, 117, 88–97CrossRefGoogle Scholar
  45. 45.
    Noy, R. and Pollard, J. W. (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41, 49–61CrossRefGoogle Scholar
  46. 46.
    Tsakiridis, T., Cutz, J.-C., Singh, G., Hirte, H., Okawara, G., Corbett, T., Sur, R., Cai, W., Whelan, T. and Wright, J. R. (2008) Association of phosphorylated epidermal growth factor receptor with survival in patients with locally advanced non-small cell lung cancer treated with radiotherapy. J. Thorac. Oncol., 3, 716–722CrossRefGoogle Scholar
  47. 47.
    Puri, N. and Salgia, R. (2008) Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J. Carcinog., 7, 9CrossRefGoogle Scholar
  48. 48.
    Marek, L., Ware, K. E., Fritzsche, A., Hercule, P., Helton, W. R., Smith, J. E., McDermott, L. A., Coldren, C. D., Nemenoff, R. A., Merrick, D. T., et al. (2009) Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol. Pharmacol., 75, 196–207CrossRefGoogle Scholar
  49. 49.
    Huang, H. P., Feng, H., Qiao, H. B., Ren, Z. X. and Zhu, G. D. (2015) The prognostic significance of fibroblast growth factor receptor 4 in non-small-cell lung cancer. OncoTargets Ther., 8, 1157–1164CrossRefGoogle Scholar
  50. 50.
    Li, J., Guan, J., Long, X., Wang, Y. and Xiang, X. (2016) mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol. Rep., 35, 3523–3531CrossRefGoogle Scholar
  51. 51.
    Fritz, J. M., Dwyer-Nield, L. D. and Malkinson, A. M. (2011) Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation. Mol. Cancer, 10, 76CrossRefGoogle Scholar
  52. 52.
    Hsu, T. I., Wang, Y. C., Hung, C. Y., Yu, C. H., Su, W. C., Chang, W. C. and Hung, J. J. (2016) Positive feedback regulation between IL10 and EGFR promotes lung cancer formation. Oncotarget, 7, 20840–20854Google Scholar
  53. 53.
    Zhong, X., Fan, Y., Ritzenthaler, J. D., Zhang, W., Wang, K., Zhou, Q. and Roman, J. (2015) Novel link between prostaglandin E2 (PGE2) and cholinergic signaling in lung cancer: the role of c-Jun in PGE2-induced α7 nicotinic acetylcholine receptor expression and tumor cell proliferation. Thorac. Cancer, 6, 488–500CrossRefGoogle Scholar
  54. 54.
    Luppi, F., Longo, A. M., de Boer, W. I., Rabe, K. F. and Hiemstra, P. S. (2007) Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer, 56, 25–33CrossRefGoogle Scholar
  55. 55.
    O’Byrne, K. J., Koukourakis, M. I., Giatromanolaki, A., Cox, G., Turley, H., Steward, W. P., Gatter, K. and Harris, A. L. (2000) Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br. J. Cancer, 82, 1427–1432CrossRefGoogle Scholar
  56. 56.
    Pertovaara, L., Kaipainen, A., Mustonen, T., Orpana, A., Ferrara, N., Saksela, O. and Alitalo, K. (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J. Biol. Chem., 269, 6271–6274Google Scholar
  57. 57.
    Saijo, Y., Tanaka, M., Miki, M., Usui, K., Suzuki, T., Maemondo, M., Hong, X., Tazawa, R., Kikuchi, T., Matsushima, K., et al. (2002) Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J. Immunol., 169, 469–475CrossRefGoogle Scholar
  58. 58.
    Boussat, S., Eddahibi, S., Coste, A., Fataccioli, V., Gouge, M., Housset, B., Adnot, S. and Maitre, B. (2000) Expression and regulation of vascular endothelial growth factor in human pulmonary epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 279, L371–L378CrossRefGoogle Scholar
  59. 59.
    Schmidt, T., Ben-Batalla, I., Schultze, A. and Loges, S. (2012) Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell. Mol. Life Sci., 69, 1391–1414CrossRefGoogle Scholar
  60. 60.
    Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 350, 2129–2139CrossRefGoogle Scholar
  61. 61.
    Li, J., Brahmer, J., Messersmith, W., Hidalgo, M. and Baker, S. D. (2006) Binding of gefitinib, an inhibitor of epidermal growth factor receptor-tyrosine kinase, to plasma proteins and blood cells: in vitro and in cancer patients. Invest. New Drugs, 24, 291–297CrossRefGoogle Scholar
  62. 62.
    Peters, S., Zimmermann, S. and Adjei, A. A. (2014) Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug-drug interactions. Cancer Treat. Rev., 40, 917–926CrossRefGoogle Scholar
  63. 63.
    Swaisland, H. C., Smith, R. P., Laight, A., Kerr, D. J., Ranson, M., Wilder-Smith, C. H. and Duvauchelle, T. (2005) Single-dose clinical pharmacokinetic studies of gefitinib. Clin. Pharmacokinet., 44, 1165–1177CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering MechanicsZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang UniversityHangzhouChina
  3. 3.Soft Matter Research CenterZhejiang UniversityHangzhouChina

Personalised recommendations