Advertisement

Multiparametric ultrasound in the evaluation of kidney disease in elderly

  • Francesco Maria DrudiEmail author
  • Vito Cantisani
  • Antonio Granata
  • Flavia Angelini
  • Daniela Messineo
  • Carlo De Felice
  • Evaristo Ettorre
Review Paper

Abstract

After the age of 30 years, GFR progressively declines at an average rate of 8 mL/min/1.73 m/decade. A problem of advanced age is that the evaluation of renal function on the basis of indicators valid in young adults, such as creatininemia, is unreliable. In fact, many patients with chronic renal failure may have serum creatinine levels within the normal range even if they have a significant reduction in renal function. Ultrasound has become a routine method of investigation in renal disease: kidney size and parenchymal echogenicity are considered markers of renal function, so US is useful in assessing the presence and degree of renal failure. CEUS is useful in the evaluation of kidney disease in the elderly: the increased hemodynamic resistance of renal microvessels reduces perfusion in the renal cortex, so fewer microbubbles enter the renal cortex. EcoColor and EcoDoppler are also useful in the evaluation of senile alterations: here, the distribution of color-signals, as compared to that in the young adult population, appears more attenuated, limited to intersegmental and interlobar districts. Among the ecoDoppler parameters, the resistance index can be considered a marker of renal damage progression, with attention needing to paid to possible concomitant confounding factors. Ultrasonography, color-Doppler and CEUS are a non-invasive and convenient modality for managing kidney disease; their integration with anamnestic, objective and laboratory data permits fast and reliable clinical, diagnostic, and therapeutic classification. It also allows early therapeutic intervention and, ultimately, improvements in patient management.

Keywords

Multiparametric ultrasound Chronic kidney disease Contrast-enhanced ultrasound Color Doppler Kidney transplantation 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    McClure M, Jorna T, Wilkinson L, Dorset JT (2017) Elderly patients with chronic kidney disease: do they really need referral to the nephrology clinic? UK Clin Kidney J 10(5):698–702CrossRefGoogle Scholar
  2. 2.
    Mallappallil M, Friedman EA, Delano BG, McFarlane SI, Salifu MO (2014) Chronic kidney disease in the elderly: evaluation and management. Clin Pract 11(5):525–535CrossRefGoogle Scholar
  3. 3.
    Granata A, Fiorini F, D’Amelio AL’(2010) ecocolorDoppler nella pratica clinica nefrologica. Aggiornamenti in tema di nefrologia. ill, Brossura, p192Google Scholar
  4. 4.
    Cammarota T, Piccoli G, Sarno A, Rabbia C, Bonenti G, Olivieri G (2006) Rene senile: Insufficienza renale nell’anziano. Radiologia geriatrica. Springer, Milan, pp 445–459CrossRefGoogle Scholar
  5. 5.
    Macunluoğlu B, Gökçe I, Atakan A, Demirci M, Arı E, Topuzoğlu A, Borazan A (2011) A comparison of different methods for the determination of glomerular filtration rate in elderly patients with chronic renal failure. Int Urol Nephrol 43(1):257–263CrossRefGoogle Scholar
  6. 6.
    Roubenoff R (2003) Sarcopenia: effects on body composition and function. J Gerontol Ser A Biol Sci Med Sci 58:1012–1017CrossRefGoogle Scholar
  7. 7.
    Fehrman-Ekholm I, Skeppholm L (2004) Renal function in the elderly (> 70 years old) measured by means of iohexol clearance, serum creatinine, serum urea and estimated clearance. Scand J Urol Nephrol 38(1):73–77CrossRefGoogle Scholar
  8. 8.
    Dowling TC, Wang ES, Ferrucci L, Sorkin JD (2013) Glomerularltration rate equations overestimate creatinine clearance in older individuals enrolled in the Baltimore longitudinal study on aging: impact on renal drug dosing. Pharmacotherapy 33(9):912–921CrossRefGoogle Scholar
  9. 9.
    Nankivell BJ (2001) Creatinine clearance and the assessment of renal function. Australian Prescriber 24:15–71CrossRefGoogle Scholar
  10. 10.
    Quaia E (2014) Radiological imaging of the kidney. Springer, Heidelberg. ISBN 978-3-642-54046-2CrossRefGoogle Scholar
  11. 11.
    Hoi S, Takata T, Sugihara T, Ida A, Ogawa M, Mae Y, Fukuda S, Munemura C, Isomoto H (2018) Predictive value of cortical thickness measured by ultrasonography for renal impairment: a longitudinal study in chronic kidney disease. J Clin Med 7(12).  https://doi.org/10.3390/jcm7120527 Google Scholar
  12. 12.
    Mancuso D, Comi N, Andreucci M, Donato C, Presta P. Fuiano (2007) Parametri ecografici renali predittivi di outcome nei pazienti con insufficienza renale cronica. Giornale Italiano di Nefrologia/Anno 24 S-39, pp. S85–S93Google Scholar
  13. 13.
    Platt JF, Rubin JM, Bowerman RA, Marn CS (1988) The inability to detect kidney disease on the basis of echogenicity. Am J Roentgenol 165:317–319CrossRefGoogle Scholar
  14. 14.
    Parenti GC, Basteri V, Bucchi E, Sturani A, Degli EE (2006) Colour-Doppler US evaluation of patients with hypertension and nephropathy. Radiol Med 111(8):1115–1123 (Epub 2006 Dec 20) CrossRefGoogle Scholar
  15. 15.
    Parolini C, Noce A, Staffolani E, Giarrizzo GF, Costanzi S, Splendiani G (2009) Renal resistive index and long-term outcome in chronic nephropathies. Radiology 252(3):888–896 (Epub 2009 Jun 15) CrossRefGoogle Scholar
  16. 16.
    Tublin ME, Bude RO, Platt JF et al (2003) Review. The resistive index in renal Doppler sonography: where do we stand? Am J Roentgenol 180(4):885–892CrossRefGoogle Scholar
  17. 17.
    Fiorini F, Granata A, Noce A, Durante O, Insalaco M, Di Daniele N (2013) Gli indici di resistenza ecografici in nefrologia: quale significato clinico? G Ital Nefrol 30(2):1724–5590Google Scholar
  18. 18.
    Yang WQ, Mou S, Xu Y, Xu L, Li FH, Li HL (2018) Quantitative parameters of contrast-enhanced ultrasonography for assessment of renal pathology: a preliminary study in chronic kidney disease. Clin Hemorheol Microcirc 68(1):71–82.  https://doi.org/10.3233/CH-170303 CrossRefGoogle Scholar
  19. 19.
    Singh H, Panta OB, Khanal U, Ghimire RK (2017) Renal cortical elastography: normal values and variations. J Med Ultrasound 25(4):215–220CrossRefGoogle Scholar
  20. 20.
    Ferrari FS, Scorzelli A, Megliola A, Drudi FM, Trovarelli S, Ponchietti R (2009) Real-time elastography in the diagnosis of prostate tumor. J Ultrasound 12(1):22–31CrossRefGoogle Scholar
  21. 21.
    Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK (2017) Ultrasound elastography: review of techniques and clinical applications. Theranostics 7(5):1303–1329CrossRefGoogle Scholar
  22. 22.
    Rogowicz-Frontczak A, Araszkiewicz A, Pilacinski S, Zozulinska-Ziolkiewicz D, Wykretowicz A, Wierusz-Wysocka B (2011) Carotid intima-media thickness and arterial stiffness in type 1 diabetic patients are dependent on age and mean blood pressure. Exp Clin Endocrinol Diabetes 119(5):281–285 (Epub 2010 Oct 28) CrossRefGoogle Scholar
  23. 23.
    O’Neill WC (2014) Renal relevant radiology: use of ultrasound in kidney disease and nephrology procedures. Clin J Am Soc Nephrol 9(2):373–381CrossRefGoogle Scholar
  24. 24.
    Dong Y, Wang WP, Cao WP, Fan P, Lin X (2014) Early assessment of chronic kidney dysfunction using contrast-enhanced ultrasound: a pilot study. Br J Radiol 87(1042):20140350CrossRefGoogle Scholar
  25. 25.
    Tsuruoka K, Yasuda T, Koitabashi K, Yazawa M, Shimazaki M, Sakurada T, Shirai S, Shibagaki Y, Kimura K, Tsujimoto F (2010) Evaluation of renal microcirculation by contrast-enhanced ultrasound with Sonazoid as a contrast agent. Int Heart J 51(3):176–182CrossRefGoogle Scholar
  26. 26.
    Eckerbom P, Hansell P, Cox EF, Buchanan C, Weis J, Palm F, Francis ST, Liss P (2019) Multiparametric assessment of renal physiology in healthy volunteers using non-invasive magnetic resonance imaging. Am J Physiol Renal Physiol 316(4):F693–F702CrossRefGoogle Scholar
  27. 27.
    Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallée JP (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transpl 33(2):ii29–ii40CrossRefGoogle Scholar
  28. 28.
    Lin HY-H, Lee Y-L, Lin K-D, Chiu Y-W, Shin S-J, Hwang S-J, Chen H-C, Hung C-C (2017) Association of renal elasticity and renal function progression in patients with chronic kidney disease evaluated by real-time ultrasound elastography. Sci Rep 7:43303CrossRefGoogle Scholar
  29. 29.
    Petrucci I, Clementi A, Sessa C, Torrisi I, Meola M (2018) Ultrasound and color Doppler applications in chronic kidney disease. J Nephrol 31(6):863–879CrossRefGoogle Scholar
  30. 30.
    Dong Y, Wang W-P, Lin P, Fan P, Mao F (2016) Assessment of renal perfusion with contrast-enhanced ultrasound: preliminary results in early diabetic nephropathies. Clin Hemorheol Microcirc 62:229–238CrossRefGoogle Scholar
  31. 31.
    Fuiano G, Caglioti A, Marino F, Mancuso D, Comi N, Natale G, Mangiacapra S, Iodice C (2001) L’insufficienza renale acuta nell’anziano. Giorn It Nefrol 18:469–481Google Scholar
  32. 32.
    Cartabellotta A, Di Iorio B (2014) Diagnosi e valutazione dell’insufficienza renale acuta. Evidence (www.evidence.it) vol 6(2):e1000068
  33. 33.
    Girometti R, Stocca T, Serena E, Granata A, Bertolotto M (2017) Impact of contrast-enhanced ultrasound in patients with renal function impairment. World J Radiol 9(1):10–16CrossRefGoogle Scholar
  34. 34.
    Zhou HY, Chen TW, Zhang XM (2016) Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016:2027370Google Scholar
  35. 35.
    Nestola M, De Matthaeis N, Ferraro PM, Fuso P, Costanzi S, Zannoni GF, Pizzolante F, Vasquez Quadra S, Gambaro G, Rapaccini GL (2018) Contrast-enhanced ultrasonography in chronic glomerulonephritides: correlation with histological parameters of disease activity. J Ultrasound 21(2):81–87CrossRefGoogle Scholar
  36. 36.
    Apoku IN, Ayoola OO, Salako AA, Idowu BM (2015) Ultrasound evaluation of obstructive uropathy and its hemodynamic responses in southwest. Intern Braz J Urol 41(3):556–561CrossRefGoogle Scholar
  37. 37.
    Tseng TY, Stoller ML (2009) Obstructive uropathy. Clin Geriatr Med 25(3):437CrossRefGoogle Scholar
  38. 38.
    Huang E, Segev DL, Rabb H (2009) Kidney transplantation in the elderly. Semin Nephrol 29(6):621–635CrossRefGoogle Scholar
  39. 39.
    Tekin S, Yavuz HA, Yuksel Y, Yucetin L, Ateş I, Tuncer M, Demirbas A (2015) Kidney transplantation from elderly donor. Transpl Proc 47(5):1309–1311CrossRefGoogle Scholar
  40. 40.
    Galgano SJ, Lockhart ME, Fananapazir G, Sanyal R (2018) Optimizing renal transplant Doppler ultrasound. Abdom Radiol 43(10):2564–2573CrossRefGoogle Scholar
  41. 41.
    Schwenger V, Korosoglou G, Hinkel UP et al (2006) Real-time contrast-enhanced sonography of renal transplant recipients predicts chronic allograft nephropathy. Am J Transpl 6(3):609–615CrossRefGoogle Scholar
  42. 42.
    Drudi FM, Pretagostini R, Padula S, Donnetti M, Giovagnorio F, Mendicino P, Marchetti F, Ricci P, Passariello R (2004) Color Doppler ultrasound in renal transplant: role of resistive index versus renal cortical ratio in the evaluation of renal transplant diseases. Nephron Clin Pract 98:c67–c72CrossRefGoogle Scholar
  43. 43.
    Drudi FM, Liberatore M, Cantisani V, Malpassini F, Maghella F, Di Leo N, Fasciolo D, D’Ambrosio F (2014) Role of color Doppler ultrasound in the evaluation of renal transplantation from living donors. J Ultrasound 17(3):207–213CrossRefGoogle Scholar
  44. 44.
    Bertolotto M, Quaia E, Rimondini A, Lubin E, Pozzi Mucelli R (2001) Current role of color Doppler ultrasound in acute renal failure. Radiol Med 102(5–6):340–347Google Scholar
  45. 45.
    Sidhu PS, Cantisani V, Dietrich CF, Gilja OH, Saftoiu A, Bartels E, Bertolotto M, Calliada F, Clevert D-A, Cosgrove D, Deganello A, D’Onofrio M, Drudi FM, Freeman S, Harvey C, Jenssen C, Jung E-M, Klauser AS, Lassau N, Meloni MF, Leen E, Nicolau C, Nolsoe C, Piscaglia F, Prada F, Prosch H, Radzina M, Savelli L, Weskott H-P, Wijkstra H (2018) The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017. Ultraschall Med 39:154–180CrossRefGoogle Scholar
  46. 46.
    Wang X, Yu Z, Guo R, Yin H, Hu X (2015) Assessment of postoperative perfusion with contrast-enhanced ultrasonography in kidney transplantation. Int J Clin Exp Med 8:18399–18405Google Scholar
  47. 47.
    Tatar IG, Teber MA, Ogur T, Kurt A, Hekimoglu B (2014) Real time sonoelastographic evaluation of renal allogra s in correlation with clinical prognostic parameters: comparison of linear and convex transducers according to segmental anatomy. Med Ultrason 16:229–235Google Scholar
  48. 48.
    Tukhbatullin MG, Galeev ShR, Garifullina LI, Galeev RH (2017) Shear wave ultrasound elastography to evaluate the state of renal transplant. Clin MedGoogle Scholar
  49. 49.
    Onniboni M, De Filippo M, Averna R, Coco L, Zompatori M, Sverzellati N, Rossi C (2013) Magnetic resonance imaging in the complications of kidney transplantation. Radiol Med 118:837–850CrossRefGoogle Scholar
  50. 50.
    Preston RA, Epstein M (1997) Ischemic renal disease: an emerging cause of chronic renal failure and end-stage renal disease. J Hypertens 15(12 Pt 1):1365–1377CrossRefGoogle Scholar
  51. 51.
    Coen G, Calabria S, Lai S, Moscaritolo E, Nofroni I, Ronga G, Rossi M, Ventroni G, Sardella D, Ferrannini M, Zaccaria A, Cianci R (2003) Diagnosis and prevalence in a hypertensive and/or uremic elderly population. BMC Nephrol 6(4):2CrossRefGoogle Scholar
  52. 52.
    Barozzi L, Capannelli D, Imbriani M (2014) Contrast enhanced ultrasound in the assessment of urogenital pathology. Archivio Italiano di Urologia e Andrologia 86:4CrossRefGoogle Scholar
  53. 53.
    Goyal S, Dixit VK, Jain AK, Shukla RC, Ghosh J, Kumar V (2013) Intrarenal resistance index (RI) as a predictor of early renal impairment in patients with liver cirrhosis. Trop Gastroenterol 34(4):235–239CrossRefGoogle Scholar
  54. 54.
    Wang Y, Liu LP, Bai WY, Wen SB, Dan HJ, Luan YY, Zeng MX, Hu B (2011) Renal haemodynamics in patients with liver cirrhosis assessed by colour ultrasonography. J Int Med Res 39(1):249–255CrossRefGoogle Scholar
  55. 55.
    Schneider AG, Schelleman A, Goodwin MD, Bailey M, Eastwood GM, Bellomo R (2015) Contrast-enhanced ultrasound evaluation of the renal microcirculation response to terlipressin in hepato-renal syndrome: a preliminary report. Ren Fail 37(1):175–179CrossRefGoogle Scholar
  56. 56.
    George SM, Kalantarinia K (2011) The role of imaging in the management of cardiorenal syndrome. Intern J Nephrol 2011:245241CrossRefGoogle Scholar
  57. 57.
    de la Espriella-Juan R, Núñez E, Miñana G, Sanchis J, Bayés-Genís A, González J, Chorro J, Núñez J (2018) Intrarenal venous flow in cardiorenal syndrome: a shining light into the darkness. ESC Heart Fail 5:1173–1175CrossRefGoogle Scholar

Copyright information

© Società Italiana di Ultrasonologia in Medicina e Biologia (SIUMB) 2019

Authors and Affiliations

  • Francesco Maria Drudi
    • 1
    Email author
  • Vito Cantisani
    • 1
  • Antonio Granata
    • 3
  • Flavia Angelini
    • 1
  • Daniela Messineo
    • 1
  • Carlo De Felice
    • 1
  • Evaristo Ettorre
    • 2
  1. 1.Department of Radiological, Oncological and Path. SciencesSapienza University of RomeRomeItaly
  2. 2.Department of Cardiovascular, Respiratory, Nephrological, Anaesthetic and Geriatric SciencesSapienza University of RomeRomeItaly
  3. 3.Department of Nephrology and DyalisisSan Giovanni di Dio HospitalAgrigentoItaly

Personalised recommendations