Advertisement

Journal of Ultrasound

, Volume 22, Issue 4, pp 491–502 | Cite as

Pediatric musculoskeletal ultrasound: a pictorial essay

  • Luigi BarbutoEmail author
  • Marco Di Serafino
  • Nicoletta Della Vecchia
  • Gaetano Rea
  • Francesco Esposito
  • Norberto Vezzali
  • Federica Ferro
  • Maria Grazia Caprio
  • Elena Augusta Vola
  • Valeria Romeo
  • Gianfranco Vallone
Pictorial Essay

Abstract

Ultrasound (US) is the main imaging modality for the evaluation of pediatric patients with musculoskeletal diseases; particularly, it is an appropriate and reliable tool for diagnosis, follow-up and treatment of several musculoskeletal pathologies affecting the pediatric age. High-frequency (10–15 MHz) and high-resolution probes provide very lofty quality images, allowing a detailed study of the pediatric musculoskeletal system. Among the well-known advantages of this technique—such as the absence of ionizing radiations, its low cost and wide availability—US can as well rely on some intrinsic characteristics of the pediatric musculoskeletal system that can improve its diagnostic capability. The unossified portions of the pediatric skeleton and the absence of a thickened adipose tissue allow US to be highly effective and reliable in the study of muscles, tendons and cartilage. Lower-frequency sectoral transducers can be required in the study of some joints such as the shoulder or the hip, as well as in the examination of deep soft-tissue lesions. Furthermore, both color and spectral Doppler play an important role in the examination of soft-tissue lesions and synovial phlogosis. In this pictorial essay the main pathological conditions of pediatric musculoskeletal system will be examined, such as painful hip, evolutionary hip dysplasia, osteochondrosis, trauma-related pathologies and juvenile idiopathic arthritis.

Keywords

Ultrasound examination High-resolution probes Musculoskeletal system Pediatric age 

Sommario

Nonostante i grandi sviluppi delle metodiche imaging degli ultimi anni, l’ecografia rappresenta al giorno d’oggi un valido ed affidabile strumento nella diagnosi, follow-up e nel trattamento di numerose patologie che interessano l’apparato muscolo scheletrico in età pediatrica. L’utilizzo di sonde lineari ad elevata frequenza (10-15 Mhz) e risoluzione risulta fondamentale nello studio dell’apparato muscolo-scheletrico pediatrico in quanto sono in grado di fornire immagini di altissimo dettaglio anatomico. Sonde settoriali a più bassa frequenza possono essere altresì richieste nello studio di alcune articolazioni come l’anca e la spalla o nello studio di lesioni dei tessuti molli profondi. Oltre ai già ben noti vantaggi di tale metodica di imaging, quali l’assenza di radiazioni ionizzanti, il basso costo e l’ampia disponibilità sul territorio, l’ecografia può sfruttare alcune caratteristiche intrinseche dell’apparato muscolo-scheletrico pediatrico, ampliando cosi notevolmente le sue capacità diagnostiche. In tal senso le porzioni non ancora ossificate dello scheletro pediatrico e la mancanza di uno spesso pannicolo adiposo forniscono una finestra acustica di studio ottimale, che rende così l’ecografia una metodica di primo livello di grande affidabilità nello studio delle articolazioni, tendini, muscoli e delle strutture cartilaginee. L’utilizzo sia del color Doppler che del Doppler spettrale svolge inoltre un ruolo fondamentale per la caratterizzazione di lesioni dei tessuti molli e per la valutazione della flogosi sinoviale. In questo pictorial essay verranno quindi esaminate le principali condizioni patologiche del sistema muscoloscheletrico pediatrico, come “l'anca dolorosa”, la displasia congenita evolutiva dell'anca, le più comuni osteocondrosi, alcune condizioni patologiche di natura traumatica e l’artrite giovanile idiopatica.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and its late amendments.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

Additional informed consent was obtained from all patients for which identifying information is not included in this article.

References

  1. 1.
    Thapa M, Vo J-N, Shiels WE II (2013) Ultrasound guided musculoskeletal procedures in children. Pediatr Radiol 43(Suppl):S55–S60.  https://doi.org/10.1007/s00247-012-2599-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Di Pietro MA, Leschied JR (2017) Pediatric musculoskeletal ultrasound. Pediatr Radiol 47:1144–1154.  https://doi.org/10.1007/s00247-017-3919-5(Epub 2017 Aug 4, Review, PMID: 28779196) CrossRefGoogle Scholar
  3. 3.
    Marc S (2005) Keller Musculoskeletal sonography in the neonate and infant. Pediatr Radiol 35:1167–1173.  https://doi.org/10.1007/s00247-005-1550-3 CrossRefGoogle Scholar
  4. 4.
    Karmazyn B (2011) Ultrasound of pediatric musculoskeletal disease: from head to toe. Semin Ultrasound CT MR. 32:142–150.  https://doi.org/10.1053/j.sult.2010.10.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Hryhorczuk AL, Restrepo R, Lee EY (2016) Pediatric musculoskeletal ultrasound: practical imaging approach. AJR Am J Roentgenol 206:W62–W72.  https://doi.org/10.2214/AJR.15.15858 CrossRefPubMedGoogle Scholar
  6. 6.
    Windschall D, Trauzeddel R, Haller M et al (2016) Pediatric musculoskeletal ultrasound: age and sex related normal B-mode findings of the knee. Rheumatol Int 36:1569-1577 (Epub 2016 Jul 11) CrossRefGoogle Scholar
  7. 7.
    Dubois-Ferrière V, Belaieff W, Lascombes P, de Coulon G, Ceroni D (2015) Transient synovitis of the hip: which investigations are truly useful? Swiss Med Wkly 21(145):w14176.  https://doi.org/10.4414/smw.2015.14176 CrossRefGoogle Scholar
  8. 8.
    Kastrissianakis K, Beattie TF (2010) Transient synovitis of the hip: more evidence for a viral aetiology. Eur J Emerg Med. 17:270–273.  https://doi.org/10.1097/MEJ.0b013e32832b1664 CrossRefPubMedGoogle Scholar
  9. 9.
    Kang YR, Koo J (2017) Ultrasonography of the pediatric hip and spine. Ultrasonography 36:239–251.  https://doi.org/10.14366/usg.16051 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Terjesen T (1993) Ultrasonography in the primary evaluation of patients with Perthes disease. J Pediatr Orthop 13:437–443CrossRefGoogle Scholar
  11. 11.
    Wirth T, LeQuesne GW, Paterson DC (1992) Ultrasonography in Legg–Calvé–Perthes disease. Pediatr Radiol 22(7):498–504CrossRefGoogle Scholar
  12. 12.
    Ashby E, Roposch A (2015) Diagnostic yield of sonography in infants with suspected hip dysplasia: diagnostic thinking efficiency and therapeutic effciency. AJR Am J Roentgenol 204:177–181.  https://doi.org/10.2214/AJR.14.12477 CrossRefPubMedGoogle Scholar
  13. 13.
    Pillai A, Joseph J, McAuley A, Bramley D (2011) Diagnostic accuracy of static Graf technique of ultrasound evaluation of infant hips for developmental dysplasia. Arch Orthop Trauma Surg 131:53–58.  https://doi.org/10.1007/s00402-010-1100-9 CrossRefPubMedGoogle Scholar
  14. 14.
    Graf R (1984) Classification of hip joint dysplasia by means of sonography. Arch Orthop Trauma Surg 102:248–255CrossRefGoogle Scholar
  15. 15.
    Schaeffer EK, Study Group I, Mulpuri K (2018) Developmental dysplasia of the hip: addressing evidence gaps with a multicentre prospective international study. Med J Aust 208:359–364CrossRefGoogle Scholar
  16. 16.
    Carmichael KD, Longo A, Yngve D et al (2008) The use of ultrasound to determine timing of Pavlik harness discontinuation in treatment of developmental dysplasia of the hip. Orthopedics 31:988Google Scholar
  17. 17.
    Draghi F, Danesino GM, Coscia D, Precerutti M, Pagani C (2008) Overload syndromes of the knee in adolescents: sonographic findings. J Ultrasound 11:151–157.  https://doi.org/10.1016/j.jus.2008.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Demirag B, Ozturk C, Yazici Z, Sarisozen B (2004) The pathophysiology of Osgood–Schlatter disease: a magnetic resonance investigation. J Pediatr Orthop B 13:379–382CrossRefGoogle Scholar
  19. 19.
    De Flaviis L, Nessi R, Scaglione P, Balconi G, Albisetti W, Derchi LE (1989) Ultrasonic diagnosis of Osgood-Schlatter and Sinding–Larsen–Johansson diseases of the knee. Skelet Radiol 18:193–197CrossRefGoogle Scholar
  20. 20,.
    Schmit P, Hautefort P, Raison-Boulley AM (1999) Ultrasonographic diagnosis of an epiphyseal detachment of the upper end of the humerus due to birth injury. J Radiol 80:466–468PubMedGoogle Scholar
  21. 21.
    Blankenbaker DG, De Smet AA (2006) The role of ultrasound in the evaluation of sports injuries of the lower extremities. Clin Sports Med 25:867–897CrossRefGoogle Scholar
  22. 22.
    Suzue N, Matsuura T, Iwame T et al (2015) State of the art ultrasonographic findings in lower extremity sports injuries. J Med Investig 62:109–113.  https://doi.org/10.2152/jmi.62.109 CrossRefGoogle Scholar
  23. 23.
    Stoll ML, Cron RQ (2013) Treatment of juvenile idiopathic arthritis in the biologic age. Rheum Dis Clin N Am 39:751–766.  https://doi.org/10.1016/j.rdc.2013.05.004 CrossRefGoogle Scholar
  24. 24.
    Collado P, Jousse-Joulin S, Alcalde M, Naredo E, D’Agostino MA (2012) Is ultrasound a validated imaging tool for the diagnosis and management of synovitis in juvenile idiopathic arthritis? A systematic literature review. Arthritis Care Res (Hoboken) 64:1011–1019.  https://doi.org/10.1002/acr.21644 CrossRefGoogle Scholar
  25. 25.
    Spârchez M, Fodor D (2018) What's new in musculoskeletal ultrasound in pediatric rheumatology? Med Ultrason 20:371–378.  https://doi.org/10.11152/mu-1604 CrossRefPubMedGoogle Scholar

Copyright information

© Società Italiana di Ultrasonologia in Medicina e Biologia (SIUMB) 2018

Authors and Affiliations

  • Luigi Barbuto
    • 1
    Email author
  • Marco Di Serafino
    • 2
  • Nicoletta Della Vecchia
    • 3
  • Gaetano Rea
    • 4
  • Francesco Esposito
    • 5
  • Norberto Vezzali
    • 6
  • Federica Ferro
    • 6
  • Maria Grazia Caprio
    • 7
  • Elena Augusta Vola
    • 8
  • Valeria Romeo
    • 8
  • Gianfranco Vallone
    • 8
  1. 1.Radiology DepartmentUmberto I HospitalNocera InferioreItaly
  2. 2.Radiology DepartmentAntonio Cardarelli HospitalNaplesItaly
  3. 3.Pediatric DepartmentVanvitelli UniversityNaplesItaly
  4. 4.Radiology DepartmentVincenzo Monaldi HospitalNaplesItaly
  5. 5.Radiology DepartmentSantobono-Pausilipon Children HospitalNaplesItaly
  6. 6.Radiology DepartmentRegional Hospital of BolzanoBolzanoItaly
  7. 7.Institute of Biostructure and BioImagingNational Research CouncilNaplesItaly
  8. 8.Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations