Current Tropical Medicine Reports

, Volume 6, Issue 2, pp 55–63 | Cite as

Exploiting Lipids to Develop Anticryptococcal Vaccines

  • Leonardo NimrichterEmail author
  • Marcio L. Rodrigues
  • Maurizio Del Poeta
Tropical Mycosis (L Martinez, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Tropical Mycosis


Purpose of Review

Cryptococcus spp. are responsible for life-threatening infections in humans causing mortality rates of 70% in developing countries. Antifungal therapy to combat cryptococcosis is based on the combination of amphotericin B, azoles, and 5-flucytosine. However, treatment failure is frequently triggered by antifungal resistance, drug-drug interactions, and toxicity. New alternatives to prevent cryptococcosis are imperative. Here, we discuss the roles of lipids in the immunological control of the disease caused by Cryptococcus spp.

Recent Findings

Recently, remarkable advances on immunology of fungal infections have been made and a number of studies indicated the potential of vaccine formulations to combat cryptococcosis. New formulations exploiting virulence regulators and genetically modified attenuated strains have been tested. In this context, lipids have emerged as virulence regulators and immunogens to be explored.


Glucosylceramide (GlcCer), sterylglycosides (SGs), and lipid-containing extracellular vesicles have been recently tested in vaccine formulations and their anticryptococcal efficacy was confirmed in vivo. Together, the data discussed here encourage the use of fungal lipids in anticryptococcal vaccinal strategies.


Cryptococcosis Immunogenic lipids Glucosylceramide Sterylglycosides Extracellular vesicles Antifungal vaccine 


Funding Information

LN was supported by grants from the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 408711/2016-7 and 311179/2017-7), Fundação de Amparo e Pesquisa do Estado do Rio de Janeiro (FAPERJ; E-26/202.809/2018-238586). MLR, who is currently on leave from the position of Associate Professor at the Microbiology Institute of the Federal University of Rio de Janeiro (Brazil), is supported by CNPq grants 405520/2018-2, 440015/2018-9, and 301304/2017-3, in addition to Fiocruz grants VPPCB-007-FIO-18 and VPPIS-001-FIO18). MLR is further supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001) and the Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN). MDP is supported by NIH grants AI116420, AI125770, AI136934, AI127704, and AI134428 and by the Merit Review Grant I01BX002624 from the Veterans Affairs Medical Center.

Compliance with Ethical Standards

Conflict of Interest

Leonardo Nimrichter and Marcio L. Rodrigues declare no conflict of interest. Dr. Maurizio Del Poeta is the co-founder and Chief Scientific Officer (CSO) of MicroRid Technologies Inc. MLR is currently in leave from a position of associate professor at the Microbiology Institute of UFRJ.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. 1.
    Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med. 2014;4(7):a019760.CrossRefGoogle Scholar
  2. 2.
    Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz. 2018;113(7):e180057.CrossRefGoogle Scholar
  3. 3.
    Chen SC, Meyer W, Sorrell TC. Cryptococcus gattii infections. Clin Microbiol Rev. 2014;27(4):980–1024.CrossRefGoogle Scholar
  4. 4.
    Skolnik K, Huston S, Mody CH. Cryptococcal lung infections. Clin Chest Med. 2017;38(3):451–64.CrossRefGoogle Scholar
  5. 5.
    Limper AH, Adenis A, Le T, Harrison TS. Fungal infections in HIV/AIDS. Lancet Infect Dis. 2017;17(11):e334–43.CrossRefGoogle Scholar
  6. 6.
    Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–81.CrossRefGoogle Scholar
  7. 7.
    Coelho C, Casadevall A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell Microbiol. 2016;18(6):792–9.CrossRefGoogle Scholar
  8. 8.
    Mourad A, Perfect JR. Present and future therapy of Cryptococcus infections. J Fungi (Basel). 2018;4(3).Google Scholar
  9. 9.
    Rollin-Pinheiro R, Singh A, Barreto-Bergter E, Del Poeta M. Sphingolipids as targets for treatment of fungal infections. Future Med Chem. 2016;8(12):1469–84.CrossRefGoogle Scholar
  10. 10.
    Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses. 2018;61(5):290–7.CrossRefGoogle Scholar
  11. 11.
    Medici NP, Del Poeta M. New insights on the development of fungal vaccines: from immunity to recent challenges. Mem Inst Oswaldo Cruz. 2015;110(8):966–73.CrossRefGoogle Scholar
  12. 12.
    Sui X, Yan L, Jiang YY. The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine. 2017;35(43):5786–93.CrossRefGoogle Scholar
  13. 13.
    Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother. 2019;110:857–68.CrossRefGoogle Scholar
  14. 14.
    Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: a comprehensive review. Biomed Pharmacother. 2019;109:333–44.CrossRefGoogle Scholar
  15. 15.
    Keshavan P, Pellegrini M, Vadivelu-Pechai K, Nissen M. An update of clinical experience with the quadrivalent meningococcal ACWY-CRM conjugate vaccine. Expert Rev Vaccines. 2018;17(10):865–80.CrossRefGoogle Scholar
  16. 16.
    Sullivan SG, Price OH, Regan AK. Burden, effectiveness and safety of influenza vaccines in elderly, paediatric and pregnant populations. Ther Adv Vaccines Immunother. 2019;7:2515135519826481.Google Scholar
  17. 17.
    Willis ED, Woodward M, Brown E, Popmihajlov Z, Saddier P, Annunziato PW, et al. Herpes zoster vaccine live: a 10 year review of post-marketing safety experience. Vaccine. 2017;35(52):7231–9.CrossRefGoogle Scholar
  18. 18.
    Cassone A. Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects. BJOG. 2015;122(6):785–94.CrossRefGoogle Scholar
  19. 19.
    Torosantucci A, Chiani P, Bromuro C, De Bernardis F, Palma AS, Liu Y, et al. Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One. 2009;4(4):e5392.CrossRefGoogle Scholar
  20. 20.
    Portuondo DL, Batista-Duharte A, Ferreira LS, Martinez DT, Polesi MC, Duarte RA, et al. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection. Immunobiology. 2016;221(2):300–9.CrossRefGoogle Scholar
  21. 21.
    Saville SP, Lazzell AL, Chaturvedi AK, Monteagudo C, Lopez-Ribot JL. Efficacy of a genetically engineered Candida albicans tet-NRG1 strain as an experimental live attenuated vaccine against hematogenously disseminated candidiasis. Clin Vaccine Immunol. 2009;16(3):430–2.CrossRefGoogle Scholar
  22. 22.
    Wuthrich M, Filutowicz HI, Warner T, Deepe GS Jr, Klein BS. Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J Exp Med. 2003;197(11):1405–16.CrossRefGoogle Scholar
  23. 23.
    Naran K, Nundalall T, Chetty S, Barth S. Principles of immunotherapy: implications for treatment strategies in cancer and infectious diseases. Front Microbiol. 2018;9:3158.CrossRefGoogle Scholar
  24. 24.
    Bozza S, Clavaud C, Giovannini G, Fontaine T, Beauvais A, Sarfati J, et al. Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J Immunol. 2009;183(4):2407–14.CrossRefGoogle Scholar
  25. 25.
    Mansilla MC, Banchio CE, de Mendoza D. Signalling pathways controlling fatty acid desaturation. Subcell Biochem. 2008;49:71–99.CrossRefGoogle Scholar
  26. 26.
    Uemura H. Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol. 2012;95(1):1–12.CrossRefGoogle Scholar
  27. 27.
    Mishra P, Bolard J, Prasad R. Emerging role of lipids of Candida albicans, a pathogenic dimorphic yeast. Biochim Biophys Acta. 1992;1127(1):1–14.CrossRefGoogle Scholar
  28. 28.
    Singh A, MacKenzie A, Girnun G, Del Poeta M. Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res. 2017;58(10):2017–36.CrossRefGoogle Scholar
  29. 29.
    • Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH Jr, Hennig M, Luberto C, et al. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest. 2006;116(6):1651–9 This work reports for the first time that GlcCer from Cryptococcus neoformans is a pathogenesis regulator and confirms previous publications suggesting that this lipid could be explored as an antifungal target.CrossRefGoogle Scholar
  30. 30.
    Rodrigues ML, Travassos LR, Miranda KR, Franzen AJ, Rozental S, de Souza W, et al. Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun. 2000;68(12):7049–60.CrossRefGoogle Scholar
  31. 31.
    Rella A, Farnoud AM, Del Poeta M. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res. 2016;61:63–72.CrossRefGoogle Scholar
  32. 32.
    Rizzo J, Colombo AC, Zamith-Miranda D, Silva VKA, Allegood JC, Casadevall A, et al. The putative flippase Apt1 is required for intracellular membrane architecture and biosynthesis of polysaccharide and lipids in Cryptococcus neoformans. Biochim Biophys Acta, Mol Cell Res. 2018;1865(3):532–41.CrossRefGoogle Scholar
  33. 33.
    Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67(7):2982–92.CrossRefGoogle Scholar
  34. 34.
    Granshaw T, Tsukamoto M, Brody S. Circadian rhythms in Neurospora crassa: farnesol or geraniol allow expression of rhythmicity in the otherwise arrhythmic strains frq10, wc-1, and wc-2. J Biol Rhythm. 2003;18(4):287–96.CrossRefGoogle Scholar
  35. 35.
    Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol. 2006;59(3):753–64.CrossRefGoogle Scholar
  36. 36.
    Brilhante RS, de Lima RA, Marques FJ, Silva NF, Caetano EP, Castelo-Branco Dde S, et al. Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. J Med Microbiol. 2015;64(Pt 4):394–9.CrossRefGoogle Scholar
  37. 37.
    Cordeiro Rde A, Nogueira GC, Brilhante RS, Teixeira CE, Mourao CI, Castelo-Branco Dde S, et al. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet Microbiol. 2012;159(3–4):375–80.CrossRefGoogle Scholar
  38. 38.
    Mozaffarian N, Berman JW, Casadevall A. Enhancement of nitric oxide synthesis by macrophages represents an additional mechanism of action for amphotericin B. Antimicrob Agents Chemother. 1997;41(8):1825–9.CrossRefGoogle Scholar
  39. 39.
    Mesa-Arango AC, Trevijano-Contador N, Roman E, Sanchez-Fresneda R, Casas C, Herrero E, et al. The production of reactive oxygen species is a universal action mechanism of amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother. 2014;58(11):6627–38.CrossRefGoogle Scholar
  40. 40.
    Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio. 2015;6(3):e00647.CrossRefGoogle Scholar
  41. 41.
    Singh A, Wang H, Silva LC, Na C, Prieto M, Futerman AH, et al. Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cell Microbiol. 2012;14(4):500–16.CrossRefGoogle Scholar
  42. 42.
    Raj S, Nazemidashtarjandi S, Kim J, Joffe L, Zhang X, Singh A, et al. Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. Biochim Biophys Acta Biomembr. 2017;1859(11):2224–33.CrossRefGoogle Scholar
  43. 43.
    Rhome R, Singh A, Kechichian T, Drago M, Morace G, Luberto C, et al. Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal. PLoS One. 2011;6(1):e15572.CrossRefGoogle Scholar
  44. 44.
    Lazzarini C, Haranahalli K, Rieger R, Ananthula HK, Desai PB, Ashbaugh A, et al. Acylhydrazones as antifungal agents targeting the synthesis of fungal sphingolipids. Antimicrob Agents Chemother. 2018;62(5).Google Scholar
  45. 45.
    Barreto-Bergter E, Pinto MR, Rodrigues ML. Structure and biological functions of fungal cerebrosides. An Acad Bras Cienc. 2004;76(1):67–84.CrossRefGoogle Scholar
  46. 46.
    Rhome R, McQuiston T, Kechichian T, Bielawska A, Hennig M, Drago M, et al. Biosynthesis and immunogenicity of glucosylceramide in Cryptococcus neoformans and other human pathogens. Eukaryot Cell. 2007;6(10):1715–26.CrossRefGoogle Scholar
  47. 47.
    Rodrigues ML, Shi L, Barreto-Bergter E, Nimrichter L, Farias SE, Rodrigues EG, et al. Monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. Clin Vaccine Immunol. 2007;14(10):1372–6.CrossRefGoogle Scholar
  48. 48.
    Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007;6(1):48–59.CrossRefGoogle Scholar
  49. 49.
    Huang SH, Wu CH, Chang YC, Kwon-Chung KJ, Brown RJ, Jong A. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS One. 2012;7(11):e48570.CrossRefGoogle Scholar
  50. 50.
    Baltazar LM, Zamith-Miranda D, Burnet MC, Choi H, Nimrichter L, Nakayasu ES, et al. Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Sci Rep. 2018;8(1):8065.CrossRefGoogle Scholar
  51. 51.
    Matos Baltazar L, Nakayasu ES, Sobreira TJ, Choi H, Casadevall A, Nimrichter L, et al. Antibody binding alters the characteristics and contents of extracellular vesicles released by Histoplasma capsulatum. mSphere. 2016;1(2).Google Scholar
  52. 52.
    Mor V, Farnoud AM, Singh A, Rella A, Tanno H, Ishii K, et al. Glucosylceramide administration as a vaccination strategy in mouse models of cryptococcosis. PLoS One. 2016;11(4):e0153853.CrossRefGoogle Scholar
  53. 53.
    Klemptner RL, Sherwood JS, Tugizimana F, Dubery IA, Piater LA. Ergosterol, an orphan fungal microbe-associated molecular pattern (MAMP). Mol Plant Pathol. 2014;15(7):747–61.CrossRefGoogle Scholar
  54. 54.
    Rossard S, Roblin G, Atanassova R. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. J Exp Bot. 2010;61(6):1807–16.CrossRefGoogle Scholar
  55. 55.
    Koselny K, Mutlu N, Minard AY, Kumar A, Krysan DJ, Wellington M. A genome-wide screen of deletion mutants in the filamentous Saccharomyces cerevisiae background identifies ergosterol as a direct trigger of macrophage pyroptosis. MBio. 2018;9(4).Google Scholar
  56. 56.
    Tejada-Simon MV, Pestka JJ. Production of polyclonal antibody against ergosterol hemisuccinate using Freund’s and Titermax adjuvants. J Food Prot. 1998;61(8):1060–3.CrossRefGoogle Scholar
  57. 57.
    Shimamura M. Immunological functions of steryl glycosides. Arch Immunol Ther Exp. 2012;60(5):351–9.CrossRefGoogle Scholar
  58. 58.
    Ferrer A, Altabella T, Arro M, Boronat A. Emerging roles for conjugated sterols in plants. Prog Lipid Res. 2017;67:27–37.CrossRefGoogle Scholar
  59. 59.
    Grille S, Zaslawski A, Thiele S, Plat J, Warnecke D. The functions of steryl glycosides come to those who wait: recent advances in plants, fungi, bacteria and animals. Prog Lipid Res. 2010;49(3):262–88.CrossRefGoogle Scholar
  60. 60.
    Bouic PJ. The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Curr Opin Clin Nutr Metab Care. 2001;4(6):471–5.CrossRefGoogle Scholar
  61. 61.
    Lee JH, Lee JY, Park JH, Jung HS, Kim JS, Kang SS, et al. Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated candidiasis in mice. Vaccine. 2007;25(19):3834–40.CrossRefGoogle Scholar
  62. 62.
    Khabazian I, Bains JS, Williams DE, Cheung J, Wilson JM, Pasqualotto BA, et al. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. J Neurochem. 2002;82(3):516–28.CrossRefGoogle Scholar
  63. 63.
    Shimamura M, Hidaka H. Therapeutic potential of cholesteryl O-acyl alpha-glucoside found in Helicobacter pylori. Curr Med Chem. 2012;19(28):4869–74.CrossRefGoogle Scholar
  64. 64.
    Wunder C, Churin Y, Winau F, Warnecke D, Vieth M, Lindner B, et al. Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat Med. 2006;12(9):1030–8.CrossRefGoogle Scholar
  65. 65.
    Chang YJ, Kim HY, Albacker LA, Lee HH, Baumgarth N, Akira S, et al. Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J Clin Invest. 2011;121(1):57–69.CrossRefGoogle Scholar
  66. 66.
    Crowley JT, Toledo AM, LaRocca TJ, Coleman JL, London E, Benach JL. Lipid exchange between Borrelia burgdorferi and host cells. PLoS Pathog. 2013;9(1):e1003109.CrossRefGoogle Scholar
  67. 67.
    Stubs G, Fingerle V, Wilske B, Gobel UB, Zahringer U, Schumann RR, et al. Acylated cholesteryl galactosides are specific antigens of borrelia causing Lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem. 2009;284(20):13326–34.CrossRefGoogle Scholar
  68. 68.
    Rella A, Mor V, Farnoud AM, Singh A, Shamseddine AA, Ivanova E, et al. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development. Front Microbiol. 2015;6:836.CrossRefGoogle Scholar
  69. 69.
    • Colombo AC, et al. Cryptococcus neoformans Glucuronoxylomannan and Sterylglucoside are required for host protection in an animal vaccination model. MBio. 2019;(10):e02909-18 This work confirms the potential use of fungal extracellular vesicles as a vaccination strategy. Google Scholar
  70. 70.
    Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS, et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol. 2015;17(3):389–407.CrossRefGoogle Scholar
  71. 71.
    Peres da Silva R, Puccia R, Rodrigues ML, Oliveira DL, Joffe LS, Cesar GV, et al. Extracellular vesicle-mediated export of fungal RNA. Sci Rep. 2015;5:7763.CrossRefGoogle Scholar
  72. 72.
    Rodrigues ML, Oliveira DL, Vargas G, Girard-Dias W, Franzen AJ, Frases S, et al. Analysis of yeast extracellular vesicles. Methods Mol Biol. 2016;1459:175–90.CrossRefGoogle Scholar
  73. 73.
    Zamith-Miranda D, Nimrichter L, Rodrigues ML, Nosanchuk JD. Fungal extracellular vesicles: modulating host-pathogen interactions by both the fungus and the host. Microbes Infect. 2018;20:501–4.CrossRefGoogle Scholar
  74. 74.
    Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, et al. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol. 2008;10(8):1695–710.CrossRefGoogle Scholar
  75. 75.
    Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology. 2009;155(Pt 12:3860–7.CrossRefGoogle Scholar
  76. 76.
    Peres da Silva R, Heiss C, Black I, Azadi P, Gerlach JQ, Travassos LR, et al. Extracellular vesicles from Paracoccidioides pathogenic species transport polysaccharide and expose ligands for DC-SIGN receptors. Sci Rep. 2015;5:14213.CrossRefGoogle Scholar
  77. 77.
    Rayner S, Bruhn S, Vallhov H, Andersson A, Billmyre RB, Scheynius A. Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Sci Rep. 2017;7:39742.CrossRefGoogle Scholar
  78. 78.
    Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun. 2010;78(4):1601–9.CrossRefGoogle Scholar
  79. 79.
    Bielska E, Sisquella MA, Aldeieg M, Birch C, O’Donoghue EJ, May RC. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun. 2018;9(1):1556.CrossRefGoogle Scholar
  80. 80.
    Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 2018;16(10):e2006872.CrossRefGoogle Scholar
  81. 81.
    da Silva TA, Roque-Barreira MC, Casadevall A, Almeida F. Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci Rep. 2016;6:35867.CrossRefGoogle Scholar
  82. 82.
    Johansson HJ, Vallhov H, Holm T, Gehrmann U, Andersson A, Johansson C, et al. Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci Rep. 2018;8(1):9182.CrossRefGoogle Scholar
  83. 83.
    Oftung F, Korsvold GE, Aase A, Naess LM. Cellular immune responses in humans induced by two serogroup B meningococcal outer membrane vesicle vaccines given separately and in combination. Clin Vaccine Immunol. 2016;23(4):353–62.CrossRefGoogle Scholar
  84. 84.
    Su EL, Snape MD. A combination recombinant protein and outer membrane vesicle vaccine against serogroup B meningococcal disease. Expert Rev Vaccines. 2011;10(5):575–88.CrossRefGoogle Scholar
  85. 85.
    Wang S, Gao J, Wang Z. Outer membrane vesicles for vaccination and targeted drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(2):e1523.CrossRefGoogle Scholar
  86. 86.
    Shears RK, Bancroft AJ, Hughes GW, Grencis RK, Thornton DJ. Extracellular vesicles induce protective immunity against Trichuris muris. Parasite Immunol. 2018;40(7):e12536.CrossRefGoogle Scholar
  87. 87.
    Di Bonito P, Accardi L, Galati L, Ferrantelli F, Federico M. Anti-cancer vaccine for HPV-associated neoplasms: focus on a therapeutic HPV vaccine based on a novel tumor antigen delivery method using endogenously engineered exosomes. Cancers (Basel). 2019;11(2).Google Scholar
  88. 88.
    Jungbauer A. Exosomes enter vaccine development: strategies meeting global challenges of emerging infections. Biotechnol J. 2018;13(4):e1700749.CrossRefGoogle Scholar
  89. 89.
    Bottero D, Gaillard ME, Errea A, Moreno G, Zurita E, Pianciola L, et al. Outer membrane vesicles derived from Bordetella parapertussis as an acellular vaccine against Bordetella parapertussis and Bordetella pertussis infection. Vaccine. 2013;31(45):5262–8.CrossRefGoogle Scholar
  90. 90.
    •• Reis FCG, et al. A Novel Protocol for the Isolation of Fungal Extracellular Vesicles Reveals the Participation of a Putative Scramblase in Polysaccharide Export and Capsule Construction in Cryptococcus gattii. mSphere 2019;(4):e00080-19 A fast and easy protocol for fungal extracellular vesicle isolation is reported in this work. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leonardo Nimrichter
    • 1
    Email author
  • Marcio L. Rodrigues
    • 1
    • 2
  • Maurizio Del Poeta
    • 3
    • 4
    • 5
  1. 1.Instituto de Microbiologia Paulo de Góes (IMPG), Departamento de Microbiologia GeralUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Carlos ChagasFundação Oswaldo Cruz (Fiocruz)CuritibaBrazil
  3. 3.Department of Molecular Genetics and MicrobiologyStony Brook UniversityStony BrookUSA
  4. 4.Department of Medicine, Division of Infectious DiseasesStony Brook UniversityStony BrookUSA
  5. 5.Veterans Administration Medical CenterNorthportUSA

Personalised recommendations