Current Tropical Medicine Reports

, Volume 5, Issue 3, pp 186–192 | Cite as

Alterations of Glucose Metabolism in HIV-Infected Patients

  • María Isabel LunaEmail author
Metabolism in Tropical Health (K Schlosser, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Metabolism in Tropical Health


Purpose of Review

The life expectancy of patients living with human immunodeficiency virus (HIV) has dramatically improved with newer antiretroviral therapy (ART), but these agents are associated with significant increase in metabolic and other non-communicable diseases. The potential for alteration in glucose metabolism should be kept in mind to optimize diagnosis and treatment. The purpose of this review is to assess the pathophysiologic mechanisms by which patients living with HIV may have their glucose metabolism altered and mention the available evidence to improve prompt screening, diagnosis, and treatment.

Recent Findings

HIV can impair glucose metabolism primarily by inflammation pathways, but most metabolic alteration is related to antiretroviral agents, usually protease inhibitors (PIs). Although glucose management is similar to the general population, newer agents are being investigated to improve glucose metabolism specifically in HIV-infected patients.


HIV-infected patients should be considered at high risk for alterations of glucose metabolism, including insulin resistance, pre-diabetes, and diabetes, especially after initiating ART. Patients should have glucose screening every 6 to 12 months and every 3 months after initiating ART. Treatment remains similar to the general population, but interactions with antiretroviral agents should be kept in mind.


Glucose metabolism Diabetes mellitus HIV 


Compliance with Ethical Standards

Conflict of Interest

The author declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Crum N, Riffenburgh R, Wegner S, Agan B, Tasker S, Spooner K, et al. Comparisons of causes of death and mortality rates among HIV-infected persons: analysis of the pre-, early, and late HAART (highly active antiretroviral therapy) eras. J Acquir Immune Defic Syndr. 2006;41(2):194–200.CrossRefPubMedGoogle Scholar
  2. 2.
    Paula A, Falcao M, Pacheco A. Metabolic syndrome in HIV-infected individuals: underlying mechanisms and epidemiological aspects. AIDS Res Ther. 2013;10:32.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tesfaye DY, Kinde S, Medhin G, Megerssa YC, Tadewos A, Tadesse E, et al. Burden of metabolic syndrome among HIV-infected patients in Southern Ethiopia. Diabetes Metab Syndr. 2014;8:102–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Ali MK, Magee MJ, Dave JA, Ofotokun I, Tungsiripat M, Jones TK, et al. HIV and metabolic, body, and bone disorders: what we know from low- and middle-income countries. J Acquir Immune Defic Syndr. 2014;67(1):27–39.CrossRefGoogle Scholar
  5. 5.
    Gutierrez A, Balasubramanyam A. Dysregulation of glucose metabolism in HIV patients: epidemiology, mechanisms, and management. Endocrine 2012;41:1–10.Google Scholar
  6. 6.
    Maganga E, Smart L, Kalluvya S, Kataraihya J, Saleh A, Obeid L, et al. Glucose metabolism disorders, HIV and antiretroviral therapy among Tanzanian adults. PLoS One. 2015;10(8):1–13.CrossRefGoogle Scholar
  7. 7.
    Walli R, Herfort O, Michl GM, Demant T, Jager H, Dieterle C, et al. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV1 infected patients. AIDS. 1998;12(15):167–73.CrossRefGoogle Scholar
  8. 8.
    Hernandez-Romieu AC, Garg S, Rosenberg ES, Thompson-Paul AM, Skarbinski J. Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009–2010. BMJ Open Diabetes Res Care. 2017;5:e000304.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Misra R, Chandra P, Riechman S, Long D, Shinde S, Pownall HJ, et al. Relationship of ethnicity and CD4 count with glucose metabolism among HIV patients on highly-active antiretroviral therapy (HAART). BMC Endocr Disord. 2013;13:13.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    • Fortuny C, Deya-Martínez A, Chiappini E, Galli L, de Martino M, Noguera-Julian A. Metabolic and renal adverse effects of antiretroviral therapy in HIV-infected children and adolescents. Pediatr Infect Dis J. 2015;34:36–43. This article summarizes the metabolic complications that can be observed in children and adolescents infected with HIV and provides general management guidelines. CrossRefGoogle Scholar
  11. 11.
    •• Willig A, Overton ET. Metabolic complications and glucose metabolism in HIV infection: a review of the evidence. Curr HIV/AIDS Rep. 2016;13(5):289–96. This article provides information and management guidelines for complications that can occur in adults infected with HIV. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    El-Sadr WM, Mullin CM, Carr A, Gilbert C, Rappoport C, Visnegarwala F, et al. Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort. HIV Med. 2005;6:114–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Noor MA, Lo JC, Mulligan K, Schwarz JM, Halvorsen RA, Schambelan M, et al. Metabolic effects of Indinavir in in healthy HIV-seronegative men. AIDS. 2001;15(7):11–8.CrossRefGoogle Scholar
  14. 14.
    Lee GA, Seneviratne T, Noor MA, Lo JC, Schwarz JM, Aweeka FT. The metabolic effects of Lopinavir/ritonavir in in healthy HIV-negative men. AIDS. 2004;18(4):641–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Behrens GM, Boerner AR, Weber K, van den Hoff J, Ockenga J, Brabant G, et al. Impaired glucose phosphorylation and transport in skeletal muscle cause insulin resistance in HIV-1–infected patients with lipodystrophy. J Clin Invest. 2002;110(9):1319–27.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Woerle HJ, Maruiz PR, Meyer C, Reichman RC, Popa EM, Dostou JM, et al. Mechanisms for the deterioration in glucose tolerance associated with HIV protease inhibitor regimens. Diabetes. 2003;52:918–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002;16:859–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Ranganathan S, Kern PA. The HIV protease inhibitor saquinavir impairs lipid metabolism and glucose transport in cultured adipocytes. J Endocrinol. 2002;172:155–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Martínez E, Conget I, Lozano L, Casamitjana R, Gatell JM. Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. AIDS. 1999;13:805–10.CrossRefPubMedGoogle Scholar
  20. 20.
    d’Etorre G, Ceccarelli G, Zaccarelli M, Ascoli-Bartoli T, Bianchi L, Bellelli V, et al. Impact of switching from lopinavir/ritonavir to boosted and un-boosted atazanavir on glucose metabolism: ATAzanavir & GLUcose metabolism (ATAGLU) study. Int J STD AIDS. 2015:1–6.Google Scholar
  21. 21.
    Blass SC, Ellinger S, Vogel M, Ingiliz P, Spengler U, Stehle P, et al. Overweight HIV patients with abdominal fat distribution treated with protease inhibitors are at high risk for abnormalities in glucose metabolism—a reason for glycemic control. Eur J Med Res. 2008;13:209–14.PubMedGoogle Scholar
  22. 22.
    Erlandson KM, Kitch D, Tierney C, Sax PE, Daar ES, Melbourne KM, et al. Impact of randomized antiretroviral therapy initiation on glucose metabolism: AIDS Clinical Trials Group Study A5224s. AIDS. 2014;28(10):1451–61.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Menezes CN, Crowther NJ, Duarte R, Van Amsterdam D, Evans D, Dickens C. A randomized clinical trial comparing metabolic parameters after 48 weeks of standard- and low-dose stavudine therapy and tenofovir disoproxil fumarate therapy in HIV-infected South African patients. HIV Med. 2014;15:3–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Karamchand S, Leisegang R, Schomaker M, Maartens G, Walters L, Hislop M. Risk factors for incident diabetes in a cohort taking first-line nonnucleoside reverse transcriptase inhibitor-based antiretroviral therapy. Medicine. 2016;95(9):e2844.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Incidence CC. Risk factors for new-onset diabetes in HIV-infected patients. Diabetes Care. 2008;31:1224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brown TT, Tassiopoulos K, Bosch RJ, Shikuma C, McComsey GA. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33:2244–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dubé MP. Disorders of glucose metabolism in patients infected with human immunodeficiency virus. Clin Infect Dis. 2000;31:1467–75.CrossRefPubMedGoogle Scholar
  28. 28.
    • American Diabetes Association. Standards of medical care in diabetes—2018. Diabetes Care. 2018;40(1):1–142. These guidelines are important since most HIV-infected adults with diabetes should be managed in a similar way to the general population. The recommendations mentioned here apply to most HIV-infected patients with diabetes. Google Scholar
  29. 29.
    •• Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis. 2015;60(3):453–62. This article mentions considerations that should be kept in mind specifically in HIV-infected patients with diabetes. CrossRefPubMedGoogle Scholar
  30. 30.
    Borai A, Livingstone C, Kaddam I, Ferns G. Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol. 2011;11(158)Google Scholar
  31. 31.
    Otten J, Ahrén B, Olsson T. Surrogate measures of insulin sensitivity vs the hyperinsulinaemic-euglycaemic clamp: a meta-analysis. Diabetologia. 2014;57(9):1781–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Yun KJ, Han K, Kim MK, Park YM, Baek KH, Song KH, et al. Insulin resistance distribution and cut-off value in Koreans from the 2008–2010 Korean National Health and Nutrition Examination Survey. PLoSOne. 2016;11(4):e0154593.CrossRefGoogle Scholar
  34. 34.
    Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP. Identification of individuals with insulin resistance using routine clinical measurements. Diabetes. 2005;54(2):333–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Qu HQ, Li Q, Rentfro AR, Fisher-Hoch SP, McCormick JB. The definition of insulin resistance using HOMA-IR for Americans of Mexican descent using machine learning. PLoS One. 2011;6(6):e21041.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kim PS, Woods C, Georgoff P, Crum D, Rosenberg A, Smith M, et al. A1C underestimates glycemia in HIV infection. Diabetes Care. 2009;32:1591–3.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kalra S, Agrawal N. Diabetes and HIV: current understanding and future perspectives. Curr Diab Rep. 2013;13:419–27.CrossRefPubMedGoogle Scholar
  38. 38.
    Wohl DA, McComsey G, Tebas P, Brown TT, Glesby MJ, Reeds D, et al. Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy. Clin Infect Dis. 2006;43:645–53.CrossRefPubMedGoogle Scholar
  39. 39.
    Schambelan M, Benson CA, Carr A, Currier JS, Dubé M, Gerber JG, et al. Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an international AIDS Society–USA panel. J Acquir Immune Defic Syndr. 2002;31:257–75.CrossRefPubMedGoogle Scholar
  40. 40.
    Feeney ER, Mallon PWG. Insulin resistance in treated HIV infection. Best Pract Res Clin Endocrinol Metab. 2011;25:443–58.CrossRefPubMedGoogle Scholar
  41. 41.
    Lake JE, Currier JS. Metabolic disease in HIV infection. Lancet Infect Dis. 2013;13:964–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Brown TT, Glesby MJ. Management of the metabolic effects of HIV and HIV drugs. Nat Rev Endocrinol. 2012;8:11–21.CrossRefGoogle Scholar
  43. 43.
    Saint-Marc T, Touraine JL. Effects of metformin on insulin resistance and central adiposity in patients receiving effective protease inhibitor therapy. AIDS. 1999;13(8):1000–2.CrossRefPubMedGoogle Scholar
  44. 44.
    Lo JC, Mulligan K, Noor MA, Schwarz JM, Halvorsen RA, Grunfeld C, et al. The effects of recombinant human growth hormone on body composition and glucose metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab. 2001;86:3480–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Schwarz JM, Mulligan K, Lee J, Lo JC, Wen M, Noor MA. Effects of recombinant human growth hormone on hepatic lipid and carbohydrate metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab. 2002;87(2):942–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Rao MN, Mulligan K, Tai V, Wen MJ, Dyachenko A, Weinberg M, et al. Effects of insulin-like growth factor (IGF)-I/IGF-binding protein-3 treatment on glucose metabolism and fat distribution in human immunodeficiency virus-infected patients with abdominal obesity and insulin resistance. J Clin Endocrinol Metab. 2010;95:4361–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stanley TL, Falutz J, Marsolais C, Morin J, Soulban G, Mamputu J, et al. Reduction in visceral adiposity is associated with an improved metabolic profile in HIV-infected patients receiving tesamorelin. Clin Infect Dis. 2012;54(11):1642–51.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Falutz J, Allas S, Blot K, Potvin D, Kotler D, Somero M, et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N Engl J Med. 2007;357:2359–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Copparil R, Bjørbaek C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov. 2012;11:692–708.CrossRefGoogle Scholar
  50. 50.
    Lee JH, Chan JL, Sourlas E, Raptopoulos V, Mantzoros CS. Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. J Clin Endocrinol Metab. 2006;91:2605–11.CrossRefPubMedGoogle Scholar
  51. 51.
    Mulligan K, Khatami H, Schwarz JM, Sakkas GK, DePaoli AM, Tai VW, et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J Clin Endocrinol Metab. 2009;94:1137–44.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Endocrinology DepartmentHospital Civil de GuadalajaraGuadalajaraMexico
  2. 2.GuadalajaraMexico

Personalised recommendations