Advertisement

The Brain Basis of Comorbidity in Neurodevelopmental Disorders

  • Melissa K. LicariEmail author
  • Amy Finlay-Jones
  • Jess E. Reynolds
  • Gail A. Alvares
  • Alicia J. Spittle
  • Jenny Downs
  • Andrew J. O. Whitehouse
  • Helen Leonard
  • Kiah L. Evans
  • Kandice Varcin
Comorbidities (D Dewey, Section Editor)
  • 26 Downloads
Part of the following topical collections:
  1. Topical Collection on Comorbidities

Abstract

Purpose of Review

Research examining brain development in neurodevelopmental disorders has largely comprised small-scale studies on individual disorders. Findings have confirmed neurodevelopmental disruption and deviation; however, comorbidity between disorders continues to challenge our understanding of brain-behaviour associations. This review discusses early brain development and the etiological factors that may give rise to atypical developmental trajectories, along with neuroimaging insights into neurodevelopmental disorders.

Recent Findings

Evidence related to the behavioural, neurological, genetic and environmental factors impacting on brain development is examined. Large neuroimaging databases are currently being used to identify early alterations in brain development and areas of divergence and convergence between disorders are reviewed.

Summary

Investigative approaches based on diagnostic groups continue to challenge our ability to elucidate regions of the brain linked to behavioural phenotypes, especially those known to be shared across disorders.

Keywords

Neurodevelopmental disorders Comorbidity Autism spectrum disorder Attention deficit hyperactivity disorder Developmental coordination disorder Neuroimaging 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hansen BH, Oerbeck B, Skirbekk B, Petrovski BE, Kristensen H. Neurodevelopmental disorders: prevalence and comorbidity in children referred to mental health services. Nordic J Psychiatry. 2018;72(4):285–91.  https://doi.org/10.1080/08039488.2018.1444087.CrossRefGoogle Scholar
  2. 2.
    Dajani DR, Llabre MM, Nebel MB, Mostofsky SH, Uddin LQ. Heterogeneity of executive functions among comorbid neurodevelopmental disorders. Sci Rep. 2016;6:36566.  https://doi.org/10.1038/srep36566.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci. 2011;31:10937–47.  https://doi.org/10.1523/JNEUROSCI.5302-10.2011.CrossRefPubMedGoogle Scholar
  4. 4.
    •• Lebel C, Deoni S. The development of brain white matter microstructure. NeuroImage 2018: S1053–8119(17)31121–7. Doi:  https://doi.org/10.1016/j.neuroimage.2017.12.097. A recent review of microstructural changes that occur in white matter from birth to early adulthood.
  5. 5.
    • Stiles J. Principles of brain development. WIREs Cogn Sci. 2017;8:e1402.  https://doi.org/10.1002/wcs.1402 A nice review discussing molecular and cellular changes in the developing central nervous system. CrossRefGoogle Scholar
  6. 6.
    Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.  https://doi.org/10.1002/cne.21974.CrossRefPubMedGoogle Scholar
  7. 7.
    Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci. 2012;109:10661–8.CrossRefGoogle Scholar
  8. 8.
    Hu WF, Chahrour MH, Walsh CA. The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet. 2014;15:195–213.  https://doi.org/10.1146/annurev-genom-090413-025600.CrossRefPubMedGoogle Scholar
  9. 9.
    Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48.  https://doi.org/10.1007/s11065-010-9148-4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Keunen K, Counsell SJ, Benders MJNL. The emergence of functional architecture during early brain development. NeuroImage. 2017;160:2–14.  https://doi.org/10.1016/j.neuroimage.2017.01.047.CrossRefPubMedGoogle Scholar
  11. 11.
    Webb SJ, Monk CS, Charles A. Developmental neuropsychology mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol. 2001;19:147–71.CrossRefGoogle Scholar
  12. 12.
    Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The cellular and molecular landscapes of the developing human central nervous system. Neuron. 2016;89:248–68.  https://doi.org/10.1016/j.neuron.2015.12.008.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    •• Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28:12176–82.  https://doi.org/10.1523/jneurosci.3479-08.2008 This study investigated structural brain development in typically developing children from birth to 2 years. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Petanjek Z, Judas M, Kostović I, Uylings HB. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex. 2008;18(4):915–29.CrossRefGoogle Scholar
  15. 15.
    Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat. 2009;3:5.  https://doi.org/10.3389/neuro.05.005.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci U S A. 2012;109:16480–5.  https://doi.org/10.1073/pnas.1117943109.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Innocenti GM, Price DJ. Exuberance in the development of cortical networks. Nat Rev Neurosci. 2005;6(12):955–65.CrossRefGoogle Scholar
  18. 18.
    Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neurosci. 2014;12(276):48–71.  https://doi.org/10.1016/j.neuroscience.2013.12.044.CrossRefGoogle Scholar
  19. 19.
    Ouyang M, Dubois J, Yu Q, Mukherjee P, Huang H. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. NeuroImage 2018:S1053–8119(18)30301-X.  https://doi.org/10.1016/j.neuroimage.2018.04.017.
  20. 20.
    Chiang M-C, Barysheva M, McMahon KL, de Zubicaray GI, Johnson K, Montgomery GW, et al. Gene network effects on brain microstructure and intellectual performance identified in 472 twins. J Neurosci. 2012;32(25):8732–45.  https://doi.org/10.1523/JNEUROSCI.5993-11.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chiang M-C, Barysheva M, Shattuck DW, Lee AD, Madsen S, Avedissian C, et al. Genetics of brain fiber architecture and intellectual performance. J Neurosci. 2009;29(7):2212–24.  https://doi.org/10.1523/jneurosci.4184-08.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Burkhalter A. Development of forward and feedback connections between areas V1 and V2 of human visual cortex. Cereb Cortex. 1993;3:476–87.CrossRefGoogle Scholar
  23. 23.
    Thompson BL, Levitt P. The clinical-basic interface in defining pathogenesis in disorders of neurodevelopmental origin. Neuron. 2010;67:702–12.  https://doi.org/10.1016/j.neuron.2010.08.037.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Scherf KS, Behrmann M, Humphreys K, Luna B. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev Sci. 2007;10:F15–30.CrossRefGoogle Scholar
  25. 25.
    • Fox SE, Levitt P, Nelson CA. How the timing and quality of early experiences influence the development of brain architecture. Child Dev. 2010;81:28–40.  https://doi.org/10.1111/j.1467-8624.2009.01380.x This paper discusses the importance of genetics and early life experience for early brain development. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17:103–11.CrossRefGoogle Scholar
  27. 27.
    Leblanc JJ, Fagiolini M. Autism: a critical period disorder? Neural Plast 2011:921680.  https://doi.org/10.1155/2011/921680.
  28. 28.
    Stoner R, Ml C, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370(13):1209–19.  https://doi.org/10.1056/NEJMoa1307491.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gilbert J, Man H-Y. Fundamental elements in autism: from neurogenesis and neurite growth to synaptic plasticity. Front Cell Neurosci. 2017;11:359.  https://doi.org/10.3389/fncel.2017.00359.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, et al. Brain imaging genetics in ADHD and beyond – mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev. 2017;80:115–55.  https://doi.org/10.1016/j.neubiorev.2017.01.013.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol. 2015;10:111–44.  https://doi.org/10.1146/annurev-pathol-012414-040405.CrossRefPubMedGoogle Scholar
  32. 32.
    de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345–61.  https://doi.org/10.1038/nm.4071.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chakrabarti S, Fombonne E. Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am J Psychiatry. 2005;162(6):1133–41.CrossRefGoogle Scholar
  34. 34.
    Yeargin-Allsopp M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C. Prevalence of autism in a US metropolitan area. J Am Med Assoc. 2003;289:49–55.CrossRefGoogle Scholar
  35. 35.
    Charman T, Pickles A, Simonoff E, Chandler S, Loucas T, Baird G. IQ in children with autism spectrum disorders: data from the Special Needs and Autism Project (SNAP). Psychol Med. 2011;41(3):619–27.  https://doi.org/10.1017/S0033291710000991.CrossRefPubMedGoogle Scholar
  36. 36.
    Matson JL, Rieske RD, Williams LW. The relationship between autism spectrum disorders and attention-deficit/hyperactivity disorder: an overview. Res Dev Disabil. 2013;34(9):2475–84.  https://doi.org/10.1016/j.ridd.2013.05.021.CrossRefPubMedGoogle Scholar
  37. 37.
    Ronald A, Simonoff E, Kuntsi J, Asherson P, Plomin R. Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. J Child Psychol Psychiatry. 2008;49(5):535–42.  https://doi.org/10.1111/j.1469-7610.2007.01857.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Dewey D, Cantell M, Crawford SG. Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. J Int Neuropsychol Soc. 2007;13:246–56.CrossRefGoogle Scholar
  39. 39.
    Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, et al. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.  https://doi.org/10.1111/j.1469-8749.2008.03242.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Zablotsky B, Bramlett MD, Blumberg SJ. The co-occurrence of autism spectrum disorder in children with ADHD. J Atten Disord. 2017;1087054717713638:108705471771363.  https://doi.org/10.1177/1087054717713638.CrossRefGoogle Scholar
  41. 41.
    Williams J, Omizzolo C, Galea MP, Vance A. Motor imagery skills of children with attention deficit hyperactivity disorder and developmental coordination disorder. Hum Mov Sci. 2013;32(1):121–35.  https://doi.org/10.1016/j.humov.2012.08.003.CrossRefPubMedGoogle Scholar
  42. 42.
    Martin NC, Piek JP, Hay D. DCD and ADHD: a genetic study of their shared aetiology. Hum Mov Sci. 2006;25(1):110–24.CrossRefGoogle Scholar
  43. 43.
    Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010;167(11):1357–63.  https://doi.org/10.1176/appi.ajp.2010.10020223.CrossRefPubMedGoogle Scholar
  44. 44.
    Novak I, Hines M, Goldsmith S, Barcla R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatr. 2012;130(5):e1285–312.  https://doi.org/10.1542/peds.2012-0924.CrossRefGoogle Scholar
  45. 45.
    Schenker R, Coster WJ, Parush S. Neuroimpairments, activity performance, and participation in children with cerebral palsy mainstreamed in elementary schools. Dev Med Child Neurol. 2005;47(12):808–14.CrossRefGoogle Scholar
  46. 46.
    Delobel-Ayoub M, Klapouszczak D, van Bakel MM, Horridge K, Sigurdardottir S, Himmelmann K, et al. Prevalence and characteristics of autism spectrum disorders in children with cerebral palsy. Dev Med Child Neurol. 2017;59(7):738–42.  https://doi.org/10.1111/dmcn.13436.CrossRefPubMedGoogle Scholar
  47. 47.
    Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The heritability of autism spectrum disorder. JAMA. 2017;318(12):1182–4.  https://doi.org/10.1001/jama.2017.12141.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen Q, Brikell I, Lichtenstein P, Serlachius E, Kuja-Halkola R, Sandin S, et al. Familial aggregation of attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry. 2017;58:231–9.  https://doi.org/10.1111/jcpp.12616.CrossRefPubMedGoogle Scholar
  49. 49.
    Fayyad J, De Graaf R, Kessler R, Alonso J, Angermeyer M, Demyttenaere K, et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry. 2007;190:402–9.CrossRefGoogle Scholar
  50. 50.
    Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164(6):942–8.CrossRefGoogle Scholar
  51. 51.
    Willcutt EG. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics. 2012;9(3):490–9.  https://doi.org/10.1007/s13311-012-0135-8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lingam R, Golding J, Jongmans MJ, Hunt LP, Ellis M, Emond A. The association between developmental coordination disorder and other developmental traits. Pediatr. 2010;126(5):e1109–18.  https://doi.org/10.1542/peds.2009-2789.CrossRefGoogle Scholar
  53. 53.
    Lingam R, Hunt L, Golding J, Jongmans M, Emond A. Prevalence of developmental coordination disorder using the DSM-IV at 7 years of age: a UK population-based study. Pediatr. 2009;123:e693–700.  https://doi.org/10.1542/peds.2008-1770.CrossRefGoogle Scholar
  54. 54.
    Ghirardi L, Brikell I, Kuja-Halkola R, Freitag CM, Franke B, Asherson P, et al. The familial co-aggregation of ASD and ADHD: a register-based cohort study. Mol Psychiatry. 2018;23(2):257–62.  https://doi.org/10.1038/mp.2017.17.CrossRefPubMedGoogle Scholar
  55. 55.
    Jokiranta-Olkoniemi E, Cheslack-Postava K, Sucksdorff D. Risk of psychiatric and neurodevelopmental disorders among siblings of probands with autism spectrum disorders. JAMA Psychiatry. 2016;73(6):622–9.  https://doi.org/10.1001/jamapsychiatry.2016.0495.CrossRefPubMedGoogle Scholar
  56. 56.
    Plummer JT, Gordon AJ, Levitt P. The genetic intersection of neurodevelopmental disorders and shared medical comorbidities - relations that translate from bench to bedside. Front Psychiatry. 2016;7:142.  https://doi.org/10.3389/fpsyt.2016.00142.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lee Y, Kim SG, Lee B, Zhang Y, Kim Y, Kim S, et al. Striatal transcriptome and interactome analysis of Shank3-overexpressing mice reveals the connectivity between Shank3 and mTORC1 signaling. Front Mole Neurosci. 2017;10:201.  https://doi.org/10.3389/fnmol.2017.00201.CrossRefGoogle Scholar
  58. 58.
    Nie D, Di Nardo A, Han JM, Baharanyi H, Kramvis I, Huynh T, et al. Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci. 2010;13:163–7.  https://doi.org/10.1038/nn.2477.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bill BR, Lowe JK, Dybuncio CT, Fogel BL. Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder. Int Rev Neurobiol. 2013;113:251–67.  https://doi.org/10.1016/B978-0-12-418700-9.00008-3.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hanson E, Bernier R, Porche K, Jackson FI, Goin-Kochel RP, Snyder LG, et al. The cognitive and behavioral phenotype of the 16p11. 2 deletion in a clinically ascertained population. Biol Psychiatry. 2015;77(9):785–93.  https://doi.org/10.1016/j.biopsych.2014.04.021.CrossRefPubMedGoogle Scholar
  61. 61.
    Jenkins J 3rd, Chow V, Blaskey L, Kuschner E, Qasmieh S, Gaetz L et al. Auditory evoked M100 response latency is delayed in children with 16p11.2 deletion but nit 16p11.2 duplication. Cereb Cortex 2016:26:1957–1964. Doi:  https://doi.org/10.1093/cercor/bhv008.
  62. 62.
    LeBlanc JJ, Nelson CA. Deletion and duplication of 16p11.2 are associated with opposing effects on visual evoked potential amplitude. Molecular Autism 2016:7:30. Doi:  https://doi.org/10.1186/s13229-016-0095-7.
  63. 63.
    Martin-Brevet S, Rodriguez-Herreros B, Nielsen JA, Moreau C, Modenato C, Maillard AM, et al. Quantifying the effects of 16p11.2 copy number variants on brain structure: a multisite genetic-first study. Biol Psychiatry. 2018;84:253–64.  https://doi.org/10.1016/j.biopsych.2018.02.1176.CrossRefPubMedGoogle Scholar
  64. 64.
    Quershi AY, Mueller S, Snyder AZ, Mukherjee P, Berman JI, Roberts TPL, et al. Opposing brain differences in 16p11.2 deletion and duplication carriers. J Neurosci. 2014;34:11199–211.  https://doi.org/10.1523/jneurosci.1366-14.2014.CrossRefGoogle Scholar
  65. 65.
    Korzeniewski SJ, Slaughter J, Lenski M, Haak P, Paneth N. The complex aetiology of cerebral palsy. Nat Rev Neurol. 2018;14(9):528–43.  https://doi.org/10.1038/s41582-018-0043-6.CrossRefPubMedGoogle Scholar
  66. 66.
    Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;8:13.  https://doi.org/10.1186/s13229-017-0121-4.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bilder DA, Pinborough-Zimmerman J, Bakian AV, Miller JS, Dorius JT, Nangle B, et al. Prenatal and perinatal factors associated with intellectual disability. Am J Intellect Dev Disabil. 2013;118(2):156–76.  https://doi.org/10.1352/1944-7558-118.2.156.CrossRefPubMedGoogle Scholar
  68. 68.
    Ask H, Gustavson K, Ystrom E, Havdahl KA, Tesli M, Askeland RB, et al. Association of gestational age at birth with symptoms of attention-deficit/hyperactivity disorder in children. JAMA Pediatr. 2018;172(8):749–56.  https://doi.org/10.1001/jamapediatrics.2018.1315.CrossRefPubMedGoogle Scholar
  69. 69.
    Zwicker JG, Yoon SW, Mackay M, Petrie-Thomas J, Rogers M, Synnes AR. Perinatal and neonatal predictors of developmental coordination disorder in very low birthweight children. Arch Dis Child. 2013;98(2):118–22.  https://doi.org/10.1136/archdischild-2012-302268.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhu JL, Olsen J, Olesen AW. Risk for developmental coordination disorder correlates with gestational age at birth. Paediatr Perinat Epidemiol. 2012;26(6):572–7.  https://doi.org/10.1111/j.1365-3016.2012.01316.x.CrossRefPubMedGoogle Scholar
  71. 71.
    Chin-Lun Hung G, Hahn J, Alamiri B, Buka SL, Goldstein JM, Laird N, et al. Socioeconomic disadvantage and neural development from infancy through early childhood. Int J Epidemiol. 2015;44(6):1889–99.  https://doi.org/10.1093/ije/dyv303.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci. 2015;18(5):773–8.  https://doi.org/10.1038/nn.3983.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Leonard H, Glasson E, Nassar N, Whitehouse A, Bebbington A, Bourke J, et al. Autism and intellectual disability are differentially related to sociodemographic background at birth. PLoS One. 2011;6:e17875.  https://doi.org/10.1371/journal.pone.0017875.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Talge NM, Neal C, Glover V. The early stress, translational research and prevention science network; fetal and neonatal experience on child and adolescent mental health. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry. 2007;48(3–4):245–61.CrossRefGoogle Scholar
  75. 75.
    Donald KA, Roos A, Fouche JP, Koen N, Howells FM, Woods RP, et al. A study of the effects of prenatal alcohol exposure on white matter microstructural integrity at birth, Acta Neuropsychiatr. 2015;27(4):197–205.  https://doi.org/10.1017/neu.2015.35.76.
  76. 76.
    Taylor PA, Jacobson SW, van der Kouwe A, Molteno CD, Chen G, Wintermark P, et al. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns. Hum Brain Mapp. 2015;36(1):170–86.  https://doi.org/10.1002/hbm.22620.CrossRefPubMedGoogle Scholar
  77. 77.
    Quartier A, Chatrousse L, Redin C, Keime C, Haumesser N, Maglott-Roth A, et al. Genes and pathways regulated by androgens in human neural cells, potential candidates for the male excess in autism spectrum disorder. Biol Psychiatry. 2018;84(4):239–52.  https://doi.org/10.1016/j.biopsych.2018.01.002.CrossRefPubMedGoogle Scholar
  78. 78.
    Ursache A, Noble KG. Pediatric Imaging, Neurocognition and Genetics study. Socioeconomic status, white matter, and executive function in children. Brain Behav. 2016;6(10):e00531.CrossRefGoogle Scholar
  79. 79.
    Bird CW, Baculis BC, Mayfield JJ, Chavez GJ, Ontiveros T, Paine DJ, et al. The brain-derived neurotrophic factor VAL68MET polymorphism modulates how developmental ethanol exposure impacts the hippocampus. Genes Brain Behav. 2018;24:e12484.  https://doi.org/10.1111/gbb.12484.CrossRefGoogle Scholar
  80. 80.
    Ameis SH, Lerch JP, Taylor MJ, Lee W, Viviano JD, Pipitone J, et al. A diffusion tensor imaging study in children with ADHD, autism spectrum disorder, OCD, and matched controls: distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am J Psychiatry. 2016;173(12):1213–22.CrossRefGoogle Scholar
  81. 81.
    Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, et al. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2013;74(8):623–32.  https://doi.org/10.1016/j.biopsych.2013.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    •• Kernbach J, Satterthwaite T, Bassett D, Smallwood J, Margulies D, Krall S, et al. Shared endo-phenotypes of default mode dysfunction in attention deficit/hyperactivity disorder and autism spectrum disorder. Transl Psychiatry. 2018;8(1):133.  https://doi.org/10.1038/s41398-018-0179-6 A recent study examining functional connectivity in brain networks in ASD and ADHD groups. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    McLeod KR, Langevin LM, Dewey D, Goodyear BG. Atypical within-and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin. 2016;12:157–64.  https://doi.org/10.1016/j.nicl.2016.06.019.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Thornton S, Bray S, Langevin LM, Dewey D. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder. Hum Mov Sci. 2018;59:134–42.  https://doi.org/10.1016/j.humov.2018.03.018.CrossRefPubMedGoogle Scholar
  85. 85.
    Shephard E, Tye C, Ashwood KL, Azadi B, Asherson P, Bolton PF, et al. Resting-state neurophysiological activity patterns in young people with ASD, ADHD, and ASD+ ADHD. J Autism Dev Disord. 2018;48(1):110–22.  https://doi.org/10.1007/s10803-017-3300-4.CrossRefPubMedGoogle Scholar
  86. 86.
    Thapar A, Rutter M. Neurodevelopmentmental disorders. In Thapar A, Pine DS, Leckman JF, Scott S, Snowling MJ, Taylor E, editors. Taylor Rutter’s Child Adolesc Psychiatry 2015: 31–40, Neurodevelopmental disorders.Google Scholar
  87. 87.
    Bussche AB, Haug NA, Ball TM, Padula CB, Goldstein-Pierarski AN, Williams LM. Utilizing a transdiagnostic neuroscience-informed approach to differentiate the components of a complex clinical presentation: a case report. Pers Med Psychiatry. 2017;3:30–7.Google Scholar
  88. 88.
    Walhovd KB, Fjell AM, Giedd J, Dale AM, Brown TT. Through thick and thin: a need to reconcile contradictory results on trajectories in human cortical development. Cereb Cortex. 2017;27(2):1472–81.  https://doi.org/10.1093/cercor/bhv301.CrossRefPubMedGoogle Scholar
  89. 89.
    Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011;1380:138–45.  https://doi.org/10.1016/j.brainres.2010.09.101.CrossRefPubMedGoogle Scholar
  90. 90.
    Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein DE, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007;104(49):19649–54.CrossRefGoogle Scholar
  91. 91.
    Reynolds JE, Licari MK, Reid SL, Elliott C, Winsor AM, Bynevelt M, et al. Reduced relative volume in motor and attention regions in developmental coordination disorder: a voxel-based morphometry study. Int J Dev Neurosci. 2017;58:59–64.  https://doi.org/10.1016/j.ijdevneu.2017.01.008.CrossRefPubMedGoogle Scholar
  92. 92.
    Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8:92.  https://doi.org/10.3389/fnsys.2014.00092.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fuelscher I, Caeyenberghs K, Enticott PG, Williams J, Lum J, Hyde C. Differential activation of brain areas in children with developmental coordination disorder during tasks of manual dexterity: an ALE meta-analysis. Neurosci Biobehav Rev. 2018;86:77–84.  https://doi.org/10.1016/j.neubiorev.2018.01.002.CrossRefPubMedGoogle Scholar
  94. 94.
    Langevin LM, Macmaster FP, Crawford S, Lebel C, Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014;164(5):1157–1164.e1.  https://doi.org/10.1016/j.jpeds.2014.01.018.CrossRefPubMedGoogle Scholar
  95. 95.
    Travers BG, Tromp DP, Adluru N, Lange N, Destiche D, Ennis C, et al. Atypical development of white matter microstructure of the corpus callosum in males with autism: a longitudinal investigation. Mol Autism. 2015;6:15.  https://doi.org/10.1186/s13229-015-0001-8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Aoki Y, Yoncheva YN, Chen B, Nath T, Sharp D, Lazar M, et al. Association of white matter structure with autism spectrum disorder and attention-deficit/hyperactivity disorder. JAMA Psychiatry. 2017;74(11):1120–8.  https://doi.org/10.1001/jamapsychiatry.2017.2573.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Williams J, Kashuk SR, Wilson PH, Thorpe G, Egan GF. White matter alterations in adults with probable developmental coordination disorder: an MRI diffusion tensor imaging study. Neuroreport. 2017;28(2):87–92.  https://doi.org/10.1097/WNR.0000000000000711.CrossRefPubMedGoogle Scholar
  98. 98.
    Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H, et al. Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Natl Acad Sci U S A. 2014;111(5):1981–6.  https://doi.org/10.1073/pnas.1324037111.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Abbott AE, Nair A, Keown CL, Datko M, Jahedi A, Fishman I, et al. Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cereb Cortex. 2016;26:4034–45.  https://doi.org/10.1093/cercor/bhv191.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    McCarthy H, Skokauskas N, Mulligan A, Donohoe G, Mullins D, Kelly J, et al. Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood. JAMA Psychiatry. 2013;70(12):1329–37.  https://doi.org/10.1001/jamapsychiatry.2013.2174.CrossRefPubMedGoogle Scholar
  101. 101.
    Park MT, Raznahan A, Shaw P, Gogtay N, Lerch JP, Chakravarty MM. Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across autism, ADHD and schizophrenia. J Psychiatry Neurosci. 2018;43(2):170094–212.  https://doi.org/10.1503/jpn.170094.CrossRefPubMedGoogle Scholar
  102. 102.
    • Milham M, Fair D, Mennes M, Mostofsky S. The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci. 2012;6:62 A comprehensive overview of the ADHD-200 database. Google Scholar
  103. 103.
    • Di Martino A, O’Connor D, Chen B, Alaerts K, Anderson J, Assaf M, et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data. 2017;4:170010.  https://doi.org/10.1038/sdata.2017.10 This paper details the ABIDE-II database. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    • Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2014;19:659–67.  https://doi.org/10.1038/mp.2013.78 Overview of the ABIDE database. CrossRefPubMedGoogle Scholar
  105. 105.
    • Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, et al. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage. 2018;173:88–112.  https://doi.org/10.1016/j.neuroimage.2018.01.054 The paper details the dHCP and the automated processing pipeline employed. CrossRefPubMedGoogle Scholar
  106. 106.
    • Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542(7641):348–51.  https://doi.org/10.1038/nature21369 A recent longitudinal neuroimaging study examining high-risk infants. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011;1380:138–45.  https://doi.org/10.1016/j.brainres.2010.09.101.CrossRefPubMedGoogle Scholar
  108. 108.
    • Emerson RW, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L, et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med. 2017;9(393).  https://doi.org/10.1126/scitranslmed.aag2882 A recent study using MRI to predict later diagnostic outcome.
  109. 109.
    Elsabbagh M, Mercure E, Hudry K, Chandler S, Pasco G, Charman T, et al. Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Curr Biol. 2012;22(4):338–42.  https://doi.org/10.1016/j.cub.2011.12.056.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Keehn B, Vogel-Farley V, Tager-Flusberg H, Nelson CA. Atypical hemispheric specialization for faces in infants at risk for autism spectrum disorder. Autism Res. 2015;8(2):187–98.  https://doi.org/10.1002/aur.1438.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Bosl WJ, Tager-Flusberg H, Nelson CA. EEG analytics for early detection of autism spectrum disorder: a data-driven approach. Sci Rep. 2018;8(1):6828.  https://doi.org/10.1038/s41598-018-24318-x.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    •• Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748–51.  https://doi.org/10.1176/appi.ajp.2010.09091379 This paper details the rationale and importance of the RDoC project. CrossRefPubMedGoogle Scholar
  113. 113.
    Casey BJ, Oliveri ME, Insel T. A neurodevelopmental perspective on the Research Domain Criteria (RDoC) framework. Biol Psychiatry. 2014;76(5):350–3.  https://doi.org/10.1016/j.biopsych.2014.01.006.CrossRefPubMedGoogle Scholar
  114. 114.
    Rosenberg MD, Casey BJ, Holmes AJ. Prediction complements explanation in understanding the developing brain. Nat Commun. 2018;9(1):589.  https://doi.org/10.1038/s41467-018-02887-9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Melissa K. Licari
    • 1
    Email author
  • Amy Finlay-Jones
    • 1
  • Jess E. Reynolds
    • 2
  • Gail A. Alvares
    • 1
  • Alicia J. Spittle
    • 3
    • 4
    • 5
  • Jenny Downs
    • 1
  • Andrew J. O. Whitehouse
    • 1
  • Helen Leonard
    • 1
  • Kiah L. Evans
    • 1
    • 6
  • Kandice Varcin
    • 1
  1. 1.Telethon Kids InstituteThe University of Western AustraliaPerthAustralia
  2. 2.Department of RadiologyUniversity of CalgaryCalgaryCanada
  3. 3.Murdoch Children’s Research InstituteParkvilleAustralia
  4. 4.The Royal Women’s HospitalParkvilleAustralia
  5. 5.Department of PhysiotherapyUniversity of MelbourneParkvilleAustralia
  6. 6.School of Occupational Therapy, Social Work and Speech PathologyCurtin UniversityPerthAustralia

Personalised recommendations