Advertisement

Galantamine-Memantine Combination as an Antioxidant Treatment for Schizophrenia

  • Maju Mathew KoolaEmail author
  • Samir Kumar Praharaj
  • Anilkumar Pillai
Psychosis (A Ahmed, Section Editor)
  • 14 Downloads
Part of the following topical collections:
  1. Topical Collection on Psychosis

Abstract

Purpose of Review

The objective of this article is to highlight the potential role of the galantamine-memantine combination as a novel antioxidant treatment for schizophrenia.

Recent Findings

In addition to the well-known mechanisms of action of galantamine and memantine, these medications also have antioxidant activity. Furthermore, an interplay exists between oxidative stress, inflammation (redox-inflammatory hypothesis), and kynurenine pathway metabolites. Also, there is an interaction between brain-derived neurotrophic factor and oxidative stress in schizophrenia. Oxidative stress may be associated with positive, cognitive, and negative symptoms and impairments in white matter integrity in schizophrenia. The antipsychotic-galantamine-memantine combination may provide a novel strategy in schizophrenia to treat positive, cognitive, and negative symptoms.

Summary

A “single antioxidant” may be inadequate to counteract the complex cascade of oxidative stress. The galantamine-memantine combination as “double antioxidants” is promising. Hence, randomized controlled trials are warranted with the antipsychotic-galantamine-memantine combination with oxidative stress and antioxidant biomarkers in schizophrenia.

Keywords

Antioxidant Clinical high risk Galantamine Memantine Oxidative stress Schizophrenia 

Notes

Acknowledgments

We thank Drs. Joshua Kantrowitz, Laura Rowland, and Iris Sommer for their valuable comments. This material was presented at the 57th American College of Neuropsychopharmacology meeting, December 9–13, 2018, Hollywood, Florida, USA; at the Schizophrenia International Research Society conference, April 10–14, 2019, Orlando, Florida, USA, and at the 74th Annual Society of Biological Psychiatry Scientific Conference, May 16-18, 2019, Chicago, Illinois, USA. The authors thank Ms. Sasha Koola for preparing Fig. 1.

Funding

The funding support to Pillai from NIH/NIMH (MH 097060) is acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Hoskins RG. Oxygen metabolism in schizophrenia. Arch Neurol Psychiatr. 1937;38(6):1261–70 This is presumably the first publication on oxygen metabolism in schizophrenia. CrossRefGoogle Scholar
  2. 2.
    • Hoffer A, Osmond H, Smythies J. Schizophrenia; a new approach. II. Result of a year’s research. J Ment Sci. 1954;100(418):29–45 This is one of the first publications on oxidative stress in schizophrenia. CrossRefPubMedGoogle Scholar
  3. 3.
    Mahadik SP, Scheffer RE. Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):45–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Ramchand CN, Davies JI, Tresman RL, Griffiths IC, Peet M. Reduced susceptibility to oxidative damage of erythrocyte membranes from medicated schizophrenic patients. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):27–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Reddy RD, Yao JK. Free radical pathology in schizophrenia: a review. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):33–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:200–6.CrossRefGoogle Scholar
  7. 7.
    • Möller M, Swanepoel T, Harvey BH. Neurodevelopmental animal models reveal the convergent role of neurotransmitter systems, inflammation, and oxidative stress as biomarkers of schizophrenia: implications for novel drug development. ACS Chem Neurosci. 2015;6(7):987–1016 This article illustrated the interplay between inflammation, oxidative stress, and the kynurenine pathway and discussed the role of memantine as an antioxidant. CrossRefPubMedGoogle Scholar
  8. 8.
    Fendri C, Mechri A, Khiari G, Othman A, Kerkeni A, Gaha L. Oxidative stress involvement in schizophrenia pathophysiology: a review. Encephale. 2006;32(2 Pt 1):244–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Ustundag B, Atmaca M, Kirtas O, Selek S, Metin K, Tezcan E. Total antioxidant response in patients with schizophrenia. Psychiatry Clin Neurosci. 2006;60(4):458–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 2009;19(2):220–30.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9(2):301–12.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bitanihirwe BK, Woo TU. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35(3):878–93.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gysin R, Kraftsik R, Boulat O, Bovet P, Conus P, Comte-Krieger E, et al. Genetic dysregulation of glutathione synthesis predicts alteration of plasma thiol redox status in schizophrenia. Antioxid Redox Signal. 2011;15(7):2003–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Martins-de-Souza D, Harris LW, Guest PC, Bahn S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal. 2011;15(7):2067–79.CrossRefPubMedGoogle Scholar
  15. 15.
    • Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal. 2011;15(7):2011–35 This is a comprehensive review on oxidative stress in schizophrenia. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y, et al. Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One. 2014;9(7):e101652.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sertan Copoglu U, Virit O, Hanifi Kokacya M, Orkmez M, Bulbul F, Binnur Erbagci A, et al. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry Res. 2015;229(1–2):200–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Shim S, Shuman M, Duncan E. An emerging role of cGMP in the treatment of schizophrenia: a review. Schizophr Res. 2016;170(1):226–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Ali FT, Abd El-Azeem EM, Hamed MA, Ali MAM, Abd Al-Kader NM, Hassan EA. Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: pathophysiological and phenotypic implications. Schizophr Res. 2017;188:98–109.CrossRefPubMedGoogle Scholar
  20. 20.
    Boll KM, Noto C, Bonifácio KL, Bortolasci CC, Gadelha A, Bressan RA, et al. Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res. 2017;253:43–8.CrossRefPubMedGoogle Scholar
  21. 21.
    • Zhang M, Zhao Z, He L, Wan C. A meta-analysis of oxidative stress markers in schizophrenia. Sci China Life Sci. 2010;53(1):112–24 This is a meta-analysis of studies on oxidative stress in schizophrenia. CrossRefPubMedGoogle Scholar
  22. 22.
    • Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400–9 This is a meta-analysis of 44 studies of oxidative stress in schizophrenia. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    •• Koola MM, Buchanan RW, Pillai A, Aitchison KJ, Weinberger DR, Aaronson ST, et al. Potential role of the combination of galantamine and memantine to improve cognition in schizophrenia. Schizophr Res. 2014;157(1–3):84–9 This article was the first to shed light on the potential role of the galantamine-memantine combination in schizophrenia and described how the combination may counteract the effects of kynurenic acid. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Koola MM. Kynurenine pathway and cognitive impairments in schizophrenia: pharmacogenetics of galantamine and memantine. SchizophrRes Cogn. 2016;4:4–9.CrossRefGoogle Scholar
  25. 25.
    •• Koola MM. Potential role of antipsychotic-galantamine-memantine combination for the treatment of positive, cognitive and negative symptoms of schizophrenia. Mol Neuropsychiatry. 2018;4:134–48 This article reviewed how the antipsychotic-galantamine-memantine combination may improve positive, cognitive, and negative symptoms concurrently. CrossRefPubMedGoogle Scholar
  26. 26.
    Noto C, Ota VK, Gadelha A, Noto MN, Barbosa DS, Bonifácio KL, et al. Oxidative stress in drug naïve first episode psychosis and antioxidant effects of risperidone. J Psychiatr Res. 2015;68:210–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316–28.CrossRefPubMedGoogle Scholar
  28. 28.
    Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, et al. Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell. 2008;7(4):506–15.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    • Golse B, Debray Q, Puget K, Michelson AM. Superoxide dismutase 1 and glutathione peroxidase levels in erythrocytes of adult schizophrenics. Nouv Press Med. 1978;7(23):2070–1 This is one of the earliest articles showing oxidative stress biomarkers in schizophrenia. Google Scholar
  30. 30.
    Li HC, Chen QZ, Ma Y, Zhou JF. Imbalanced free radicals and antioxidant defense systems in schizophrenia: a comparative study. J Zhejiang Univ Sci B. 2006;7(12):981–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000;12(10):3721–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Leipnitz G, Schumacher C, Scussiato K, Dalcin KB, Wannmacher CM, Wyse AT, et al. Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. Int J Dev Neurosci. 2005;23(8):695–701.CrossRefPubMedGoogle Scholar
  33. 33.
    Akyol O, Herken H, Uz E, Fadillioğlu E, Unal S, Söğüt S, et al. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(5):995–1005.CrossRefPubMedGoogle Scholar
  34. 34.
    Dietrich-Muszalska A, Olas B, Głowacki R, Bald E. Oxidative/nitrative modifications of plasma proteins and thiols from patients with schizophrenia. Neuropsychobiology. 2009;59(1):1–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Kano S, Colantuoni C, Han F, Zhou Z, Yuan Q, Wilson A, et al. Genome-wide profiling of multiple histone methylations in olfactory cells: further implications for cellular susceptibility to oxidative stress in schizophrenia. Mol Psychiatry. 2013;18(7):740–2.CrossRefPubMedGoogle Scholar
  36. 36.
    •• Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:214–23 This comprehensive review showed all the oxidative stress and antioxidant biomarkers in schizophrenia that have been validated. CrossRefGoogle Scholar
  37. 37.
    Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, et al. Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One. 2008;3(4):e1944.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Albayrak Y, Ünsal C, Beyazyüz M, Ünal A, Kuloğlu M. Reduced total antioxidant level and increased oxidative stress in patients with deficit schizophrenia: a preliminary study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:144–9.CrossRefGoogle Scholar
  39. 39.
    Monin A, Baumann PS, Griffa A, Xin L, Mekle R, Fournier M, et al. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol Psychiatry. 2015;20(7):827–38.CrossRefPubMedGoogle Scholar
  40. 40.
    Alameda L, Fournier M, Khadimallah I, Griffa A, Cleusix M, Jenni R, et al. Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proc Natl Acad Sci U S A. 2018;115(49):12495–500.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chittiprol S, Venkatasubramanian G, Neelakantachar N, Babu SV, Reddy NA, Shetty KT, et al. Oxidative stress and neopterin abnormalities in schizophrenia: a longitudinal study. J Psychiatr Res. 2010;44:310–3.CrossRefPubMedGoogle Scholar
  42. 42.
    Sagara Y. Induction of reactive oxygen species in neurons by haloperidol. J Neurochem. 1998;71(3):1002–12.CrossRefPubMedGoogle Scholar
  43. 43.
    Reinke A, Martins MR, Lima MS, Moreira JC, Dal-Pizzol F, Quevedo J. Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett. 2004;372(1–2):157–60.CrossRefPubMedGoogle Scholar
  44. 44.
    Jeding I, Evans PJ, Akanmu D, Dexter D, Spencer JD, Aruoma OI, et al. Characterization of the potential antioxidant and pro-oxidant actions of some neuroleptic drugs. Biochem Pharmacol. 1995;49(3):359–65.CrossRefPubMedGoogle Scholar
  45. 45.
    Pillai A, Parikh V, Terry AV Jr, Mahadik SP. Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res. 2007;41(5):372–86.CrossRefPubMedGoogle Scholar
  46. 46.
    Kriisa K, Haring L, Vasar E, Koido K, Janno S, Vasar V, et al. Antipsychotic treatment reduces indices of oxidative stress in first-episode psychosis patients. Oxidative Med Cell Longev. 2016;2016:9616593.CrossRefGoogle Scholar
  47. 47.
    Hill VM, O'Connor RM, Sissoko GB, Irobunda IS, Leong S, Canman JC, et al. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol. 2018;16(7):e2005206.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    •• Traykova M, Traykov T, Hadjimitova V, Krikorian K, Bojadgieva N. Antioxidant properties of galantamine hydrobromide. Z Naturforsch C. 2003;58(5–6):361–5 This article highlighted the antioxidant properties of galantamine. CrossRefPubMedGoogle Scholar
  49. 49.
    •• Ezoulin MJ, Ombetta JE, Dutertre-Catella H, Warnet JM, Massicot F. Antioxidative properties of galantamine on neuronal damage induced by hydrogen peroxide in SK-N-SH cells. Neurotoxicology. 2008;29(2):270–7 This article sheds light on the antioxidant properties of galantamine. CrossRefPubMedGoogle Scholar
  50. 50.
    •• Melo JB, Sousa C, Garção P, Oliveira CR, Agostinho P. Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. Eur J Neurosci. 2009;29(3):455–64 This study showed the antioxidant activity of galantamine. CrossRefPubMedGoogle Scholar
  51. 51.
    •• Triana-Vidal LE, Carvajal-Varona SM. Protective effect of galantamine against oxidative damage using human lymphocytes: a novel in vitro model. Arch Med Res. 2013;44(2):85–92 This article described galantamine’s antioxidant properties. CrossRefPubMedGoogle Scholar
  52. 52.
    •• Tsvetkova D, Obreshkova D, Zheleva-Dimitrova D, Saso L. Antioxidant activity of galantamine and some of its derivatives. Curr Med Chem. 2013;20(36):4595–608 This article illustrated the antioxidant properties of galantamine. CrossRefPubMedGoogle Scholar
  53. 53.
    Tanović A, Alfaro V. Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer’s disease and vascular dementia. Rev Neurol. 2006;42(10):607–16.PubMedGoogle Scholar
  54. 54.
    De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.CrossRefPubMedGoogle Scholar
  55. 55.
    •• Pietá Dias C, Martins de Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, et al. Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience. 2007;146(4):1719–25 This study demonstrated that memantine enhanced cognition by reducing oxidative stress. CrossRefPubMedGoogle Scholar
  56. 56.
    Liu W, Xu Z, Deng Y, Xu B, Wei Y, Yang T. Protective effects of memantine against methylmercury-induced glutamate dyshomeostasis and oxidative stress in rat cerebral cortex. Neurotox Res. 2013;24(3):320–37.CrossRefPubMedGoogle Scholar
  57. 57.
    •• Sozio P, Cerasa LS, Laserra S, Cacciatore I, Cornacchia C, Di Filippo ES, et al. Memantine-sulfur containing antioxidant conjugates as potential prodrugs to improve the treatment of Alzheimer’s disease. Eur J Pharm Sci. 2013;49(2):187–98 This article demonstrated the antioxidant role of memantine. CrossRefPubMedGoogle Scholar
  58. 58.
    Rajasekar N, Nath C, Hanif K, Shukla R. Inhibitory effect of memantine on streptozotocin-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and neurotrophic factor decline in astrocytes. Mol Neurobiol. 2016;53(10):6730–44.CrossRefPubMedGoogle Scholar
  59. 59.
    Lewerenz J, Letz J, Methner A. Activation of stimulatory heterotrimeric G proteins increases glutathione and protects neuronal cells against oxidative stress. J Neurochem. 2003;87(2):522–31.CrossRefPubMedGoogle Scholar
  60. 60.
    Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A. Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets. 2010;9(3):373–82.CrossRefPubMedGoogle Scholar
  61. 61.
    Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (−) : cystine supplier and beyond. Amino Acids. 2012;42(1):231–46.CrossRefPubMedGoogle Scholar
  62. 62.
    Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522–55.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Liu X, Albano R, Lobner D. FGF-2 induces neuronal death through upregulation of system xc. Brain Res. 2014;1547:25–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Kong L, Albano R, Madayag A, Raddatz N, Mantsch JR, Choi S, et al. Pituitary adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc. J Neurochem. 2016;137(3):384–93.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lewerenz J, Klein M, Methner A. Cooperative action of glutamate transporters and cystine/glutamate antiporter system xc- protects from oxidative glutamate toxicity. J Neurochem. 2006;98(3):916–25.CrossRefPubMedGoogle Scholar
  66. 66.
    •• Okada M, Fukuyama K, Kawano Y, Shiroyama T, Ueda Y. Memantine protects thalamocortical hyper-glutamatergic transmission induced by NMDA receptor antagonism via activation of system xc. Pharmacol Res Perspect. 2019;7(1):e00457 This is the first article to show that memantine (in addition to action on the NMDA receptors) has action via activation of system xc (glutamate/cystine-antiporter). CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    •• Lorrio S, Negredo P, Roda JM, García AG, López MG. Effects of memantine and galantamine given separately or in association, on memory and hippocampal neuronal loss after transient global cerebral ischemia in gerbils. Brain Res. 2009;1254:128–37 This study demonstrated that the combination of galantamine and memantine had synergistic effect on the antioxidant biomarker; a finding that was not seen with either medication alone. CrossRefPubMedGoogle Scholar
  68. 68.
    Fujisaki K, Tsuruya K, Yamato M, Toyonaga J, Noguchi H, Nakano T, et al. Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of tempol. Nephrol Dial Transplant. 2014;29(3):529–38.CrossRefPubMedGoogle Scholar
  69. 69.
    Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci. 2008;29(12):609–15.CrossRefPubMedGoogle Scholar
  70. 70.
    Mezeiova E, Spilovska K, Nepovimova E, Gorecki L, Soukup O, Dolezal R, et al. Profiling donepezil template into multipotent hybrids with antioxidant properties. J Enzyme Inhib Med Chem. 2018;33(1):583–606.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    •• Koola MM, Nikiforuk A, Pillai A, Parsaik AK. Galantamine-memantine combination superior to donepezil-memantine combination in Alzheimer’s disease: critical dissection with an emphasis on kynurenic acid and mismatch negativity. Journal of Geriatric Care and Research. 2018;5(2):57–67 This comprehensive review illustrated how the galantamine-memantine combination may have synergistic action on oxidative stress. PubMedPubMedCentralGoogle Scholar
  72. 72.
    Sawa A, Sedlak TW. Oxidative stress and inflammation in schizophrenia. Schizophr Res. 2016;176(1):1–2.CrossRefPubMedGoogle Scholar
  73. 73.
    Müller N, Myint AM, Schwarz MJ. Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des. 2011;17(2):130–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, et al. Deficit, but not nondeficit, schizophrenia is characterized by mucosa-associated activation of the tryptophan catabolite (TRYCAT) pathway with highly specific increases in IgA responses directed to picolinic, xanthurenic, and quinolinic acid. Mol Neurobiol. 2018;55(2):1524–36.CrossRefPubMedGoogle Scholar
  76. 76.
    •• Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, et al. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol. 2011;33(5):538–47 This article discussed the antioxidant activity of kynurenic acid. CrossRefPubMedGoogle Scholar
  77. 77.
    Christen S, Peterhans E, Stocker R. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci U S A. 1990;87(7):2506–10.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, et al. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry. 2000;39(24):7266–75.CrossRefPubMedGoogle Scholar
  79. 79.
    Giles GI, Collins CA, Stone TW, Jacob C. Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. Biochem Biophys Res Commun. 2003;300(3):719–24.CrossRefPubMedGoogle Scholar
  80. 80.
    Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, et al. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int. 2007;50(1):83–94.CrossRefPubMedGoogle Scholar
  81. 81.
    Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci. 2007;257(1–2):221–39.CrossRefPubMedGoogle Scholar
  82. 82.
    Thevandavakkam MA, Schwarcz R, Muchowski PJ, Giorgini F. Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington’s disease. CNS Neurol Disord Drug Targets. 2010;9(6):791–800.CrossRefPubMedGoogle Scholar
  83. 83.
    Pérez-De La Cruz V, Carrillo-Mora P, Santamaría A. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res. 2012;5:1–8.PubMedGoogle Scholar
  84. 84.
    Kubicova L, Hadacek F, Chobot V. Quinolinic acid: neurotoxin or oxidative stress modulator? Int J Mol Sci. 2013;14(11):21328–38.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Blanco Ayala T, Lugo Huitrón R, Carmona Aparicio L, Ramírez Ortega D, González Esquivel D, Pedraza Chaverrí J, et al. Alternative kynurenic acid synthesis routes studied in the rat cerebellum. Front Cell Neurosci. 2015;9:178.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhuravlev AV, Zakharov GA, Shchegolev BF, Savvateeva-Popova EV. Antioxidant properties of kynurenines: density functional theory calculations. PLoS Comput Biol. 2016;12(11):e1005213.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Réus GZ, Becker IRT, Scaini G, Petronilho F, Oses JP, Kaddurah-Daouk R, et al. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:55–63.CrossRefGoogle Scholar
  88. 88.
    Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun. 2009;23(1):41–5.CrossRefGoogle Scholar
  89. 89.
    Shifrin H, Nadler-Milbauer M, Shoham S, Weinstock M. Rivastigmine alleviates experimentally induced colitis in mice and rats by acting at central and peripheral sites to modulate immune responses. PLoS One. 2013;8(2):e57668.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wazea SA, Wadie W, Bahgat AK, El-Abhar HS. Galantamine anti-colitic effect: role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci Rep. 2018;8(1):5110.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gallowitsch-Puerta M, Tracey KJ. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann N Y Acad Sci. 2005;1062:209–19.CrossRefPubMedGoogle Scholar
  92. 92.
    Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, et al. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflammation. 2018;15(1):112.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wang T, Zhu H, Hou Y, Gu W, Wu H, Luan Y, et al. Galantamine reversed early postoperative cognitive deficit via alleviating inflammation and enhancing synaptic transmission in mouse hippocampus. Eur J Pharmacol. 2019;846:63–72.CrossRefPubMedGoogle Scholar
  94. 94.
    Wang Z, He X, Fan X. Postnatal administration of memantine rescues TNF-α-induced decreased hippocampal precursor proliferation. Neurosci Lett. 2018;662:173–80.CrossRefPubMedGoogle Scholar
  95. 95.
    Lee SY, Chen SL, Chang YH, Chen PS, Huang SY, Tzeng NS, et al. The effects of add-on low-dose memantine on cytokine levels in bipolar II depression: a 12-week double-blind, randomized controlled trial. J Clin Psychopharmacol. 2014;34(3):337–43.CrossRefPubMedGoogle Scholar
  96. 96.
    Pillai A. Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals. 2008;16(2–3):183–93.CrossRefPubMedGoogle Scholar
  97. 97.
    Pandya CD, Kutiyanawalla A, Pillai A. BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr. 2013;6(1):22–8.CrossRefPubMedGoogle Scholar
  98. 98.
    Golime R, Palit M, Acharya J, Dubey DK. Neuroprotective effects of galantamine on nerve agent-induced neuroglial and biochemical changes. Neurotox Res. 2018;33(4):738–48.CrossRefPubMedGoogle Scholar
  99. 99.
    Amin SN, El-Aidi AA, Ali MM, Attia YM, Rashed LA. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior. NeuroMolecular Med. 2015;17(2):121–36.CrossRefPubMedGoogle Scholar
  100. 100.
    Kuipers SD, Bramham CR. Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel. 2006;9(5):580–6.PubMedGoogle Scholar
  101. 101.
    Pillai A, Mahadik SP. Increased truncated TrkB receptor expression and decreased BDNF/TrkB signaling in the frontal cortex of reeler mouse model of schizophrenia. Schizophr Res. 2008;100(1–3):325–33.CrossRefPubMedGoogle Scholar
  102. 102.
    Autio H, Mätlik K, Rantamäki T, Lindemann L, Hoener MC, Chao M, et al. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology. 2011;61(8):1291–6.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Zhu G, Li J, He L, Wang X, Hong X. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol. 2015;172(9):2354–68.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Amidfar M, Kim YK, Wiborg O. Effectiveness of memantine on depression-like behavior, memory deficits and brain mRNA levels of BDNF and TrkB in rats subjected to repeated unpredictable stress. Pharmacol Rep. 2018;70(3):600–6.CrossRefPubMedGoogle Scholar
  105. 105.
    Khalil OS, Forrest CM, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation. Immunopharmacol Immunotoxicol. 2013;35(5):581–93.CrossRefPubMedGoogle Scholar
  106. 106.
    Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun. 2013;28:170–81.CrossRefPubMedGoogle Scholar
  107. 107.
    Zhang XY, Chen DC, Tan YL, Tan SP, Wang ZR, Yang FD, et al. The interplay between BDNF and oxidative stress in chronic schizophrenia. Psychoneuroendocrinology. 2015;51:201–8.CrossRefPubMedGoogle Scholar
  108. 108.
    Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL. Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J. 2010;24(7):2533–45.CrossRefPubMedGoogle Scholar
  109. 109.
    Schwieler L, Larsson MK, Skogh E, Kegel ME, Orhan F, Abdelmoaty S, et al. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia--significance for activation of the kynurenine pathway. J Psychiatry Neurosci. 2015;40(2):126–33.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Erhardt S, Olsson SK, Engberg G. Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs. 2009;23(2):91–101.CrossRefPubMedGoogle Scholar
  111. 111.
    Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia. Schizophr Bull. 2010;36:211–8.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Koola MM, Sklar J, Davis W, Nikiforuk A, Meissen JK, Sawant-Basak A, et al. Kynurenine pathway in schizophrenia: Galantamine-memantine combination for cognitive impairments. Schizophr Res. 2018;193:459–60.CrossRefPubMedGoogle Scholar
  113. 113.
    Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. In press. Google Scholar
  114. 114.
    Mikkelsen JD, Thomsen MS, Hansen HH, Lichota J. Use of biomarkers in the discovery of novel anti-schizophrenia drugs. Drug Discov Today. 2010;15(3–4):137–41.CrossRefPubMedGoogle Scholar
  115. 115.
    Koola MM. Galantamine-memantine combination for cognitive impairments due to electroconvulsive therapy, traumatic brain injury, and neurologic and psychiatric disorders: kynurenic acid and mismatch negativity target engagement. Prim Care Companion CNS Disord. 2018;20(2).  https://doi.org/10.4088/PCC.17nr02235.
  116. 116.
    •• Koola MM. Attenuated mismatch negativity in attenuated psychosis syndrome predicts psychosis: can galantamine-memantine combination prevent psychosis? Mol Neuropsychiatry. 2018;4:71–4 This article discussed how enhancing mismatch negativity may prevent schizophrenia. The combination has an additional advantage of having antioxidant activity. CrossRefPubMedGoogle Scholar
  117. 117.
    Alkondon M, Albuquerque EX. Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol. 2001;86(6):3043–55.CrossRefPubMedGoogle Scholar
  118. 118.
    Buhler AV, Dunwiddie TV. alpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons. J Neurophysiol. 2002;87(1):548–57.CrossRefPubMedGoogle Scholar
  119. 119.
    Lewis DA, Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol. 2006;63(10):1372–6.CrossRefPubMedGoogle Scholar
  120. 120.
    Balla A, Nattini ME, Sershen H, Lajtha A, Dunlop DS, Javitt DC. GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum. Neuropharmacology. 2009;56(5):915–21.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Beggiato S, Tanganelli S, Fuxe K, Antonelli T, Schwarcz R, Ferraro L. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology. 2014;82:11–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Townsend M, Whyment A, Walczak JS, Jeggo R, van den Top M, Flood DG, et al. α7-nAChR agonist enhances neural plasticity in the hippocampus via a GABAergic circuit. J Neurophysiol. 2016;116(6):2663–75.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Flores-Barrera E, Thomases DR, Cass DK, Bhandari A, Schwarcz R, Bruno JP, et al. Preferential disruption of prefrontal GABAergic function by nanomolar concentrations of the α7nACh negative modulator kynurenic acid. J Neurosci. 2017;37(33):7921–9.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Bali ZK, Nagy LV, Hernádi I. Alpha7 nicotinic acetylcholine receptors play a predominant role in the cholinergic potentiation of N-methyl-D-aspartate evoked firing responses of hippocampal CA1 pyramidal cells. Front Cell Neurosci. 2017;11:271.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr Res. 2016;176(1):41–51.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    •• Keshavan MS, Lawler AN, Nasrallah HA, Tandon R. New drug developments in psychosis: challenges, opportunities and strategies. Prog Neurobiol. 2017;152:3–20 This article argues for a paradigm shift in the pharmacological treatment of schizophrenia. CrossRefPubMedGoogle Scholar
  127. 127.
    Koola MM, Parsaik AK. Galantamine-memantine combination effective in dementia: translate to dementia praecox? Schizophr Res Cogn. 2018;12:8–10.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Koola MM. Galantamine and memantine combination for cognition: enough or more than enough to translate from murines and macaques to men with schizophrenia? Asian J Psychiatr. In press.Google Scholar
  129. 129.
    Aramakis VB, Metherate R. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci. 1998;18(20):8485–95.CrossRefPubMedGoogle Scholar
  130. 130.
    Neumeister KL, Riepe MW. Synergistic effects of antidementia drugs on spatial learning and recall in the APP23 transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2012;30(2):245–51.CrossRefPubMedGoogle Scholar
  131. 131.
    Nikiforuk A, Potasiewicz A, Kos T, Popik P. The combination of memantine and galantamine improves cognition in rats: the synergistic role of the α7 nicotinic acetylcholine and NMDA receptors. Behav Brain Res. 2016;313:214–8.CrossRefPubMedGoogle Scholar
  132. 132.
    Gmiro VE, Serdiuk SE. The search for selective blockers of NMDA and AMPA/kainate receptors in a series of bis-ammonium compounds with adamantyl radicals. Eksp Klin Farmakol. 2000;63(1):7–13.PubMedGoogle Scholar
  133. 133.
    Geerts H, Grossberg GT. Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J Clin Pharmacol. 2006;46(7 Suppl 1):8S–16S.CrossRefPubMedGoogle Scholar
  134. 134.
    Bali ZK, Bruszt N, Tadepalli SA, Csurgyók R, Nagy LV, Tompa M, et al. Cognitive enhancer effects of low Memantine doses are facilitated by an alpha7 nicotinic acetylcholine receptor agonist in scopolamine-induced amnesia in rats. Front Pharmacol. 2019;10:73.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Knott V, Shah D, Millar A, McIntosh J, Fisher D, Blais C, et al. Nicotine, auditory sensory memory, and sustained attention in a human ketamine model of schizophrenia: moderating influence of a hallucinatory trait. Front Pharmacol. 2012;3:172.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Hamilton HK, D'Souza DC, Ford JM, Roach BJ, Kort NS, Ahn KH, et al. Interactive effects of an N-methyl-d-aspartate receptor antagonist and a nicotinic acetylcholine receptor agonist on mismatch negativity: implications for schizophrenia. Schizophr Res. 2018;191:87–94.CrossRefPubMedGoogle Scholar
  137. 137.
    Beggiato S, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K, Schwarcz R, et al. Kynurenic acid, by targeting α7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci. 2013;37(9):1470–7.CrossRefPubMedGoogle Scholar
  138. 138.
    Dashniani MG, Burdzhanadze MA, Naneĭshvili TL, Kruashvili LB, Sephashvili MM. Effects of chronic memantine treatment on hippocampal extracellular glutamate and GABA levels during spatial alternation testing. Georgian Med News. 2012;202:68–75.Google Scholar
  139. 139.
    Ahnaou A, Huysmans H, Jacobs T, Drinkenburg WH. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential. Neuropharmacology. 2014;86:362–77.CrossRefPubMedGoogle Scholar
  140. 140.
    Ma J, Mufti A, Stan Leung L. Effects of memantine on hippocampal long-term potentiation, gamma activity, and sensorimotor gating in freely moving rats. Neurobiol Aging. 2015;36(9):2544–54.CrossRefPubMedGoogle Scholar
  141. 141.
    Gascoyne LE, Mullinger KJ, Robson SE, Kumar J, O'Neill GC, Palaniyappan L, et al. Changes in electrophysiological markers of cognitive control after administration of galantamine. Neuroimage Clin. 2018;20:228–35.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Light GA, Zhang W, Joshi YB, Bhakta S, Talledo JA, Swerdlow NR. Single-dose memantine improves cortical oscillatory response dynamics in patients with schizophrenia. Neuropsychopharmacology. 2017;42(13):2633–9.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Shao S, Li M, Du W, Shao F, Wang W. Galantamine, an acetylcholine inhibitor, prevents prepulse inhibition deficits induced by adolescent social isolation or MK-801 treatment. Brain Res. 2014;1589:105–11.CrossRefPubMedGoogle Scholar
  144. 144.
    Swerdlow NR, Bhakta S, Chou HH, Talledo JA, Balvaneda B, Light GA. Memantine effects on sensorimotor gating and mismatch negativity in patients with chronic psychosis. Neuropsychopharmacology. 2016;41(2):419–30.CrossRefPubMedGoogle Scholar
  145. 145.
    Giunta B, Ehrhart J, Townsend K, Sun N, Vendrame M, Shytle D, et al. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res Bull. 2004;64(2):165–70.CrossRefPubMedGoogle Scholar
  146. 146.
    Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology. 2009;34(10):2344–57.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Gil-Bea FJ, Solas M, Mateos L, Winblad B, Ramírez MJ, Cedazo-Mínguez A. Cholinergic hypofunction impairs memory acquisition possibly through hippocampal arc and BDNF downregulation. Hippocampus. 2011;21(9):999–1009.PubMedGoogle Scholar
  148. 148.
    Marvanová M, Lakso M, Pirhonen J, Nawa H, Wong G, Castrén E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci. 2001;18(3):247–58.CrossRefPubMedGoogle Scholar
  149. 149.
    Massey KA, Zago WM, Berg DK. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol Cell Neurosci. 2006;33(4):381–8.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Navakkode S, Korte M. Cooperation between cholinergic and glutamatergic receptors are essential to induce BDNF-dependent long-lasting memory storage. Hippocampus. 2012;22(2):335–46.CrossRefPubMedGoogle Scholar
  151. 151.
    Penadés R, García-Rizo C, Bioque M, González-Rodríguez A, Cabrera B, Mezquida G, et al. The search for new biomarkers for cognition in schizophrenia. Schizophr Res Cogn. 2015;2(4):172–8.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, et al. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry. 2016;6(11):e967.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Sobrado M, Roda JM, López MG, Egea J, García AG. Galantamine and memantine produce different degrees of neuroprotection in rat hippocampal slices subjected to oxygen-glucose deprivation. Neurosci Lett. 2004;365(2):132–6.CrossRefPubMedGoogle Scholar
  154. 154.
    Hodgkins PS, Schwarcz R. Interference with cellular energy metabolism reduces kynurenic acid formation in rat brain slices: reversal by lactate and pyruvate. Eur J Neurosci. 1998;10(6):1986–94.CrossRefPubMedGoogle Scholar
  155. 155.
    Chen Y, Brew BJ, Guillemin GJ. Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem. 2011;118(5):816–25.CrossRefPubMedGoogle Scholar
  156. 156.
    Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry. 2009;65(6):489–94.CrossRefPubMedGoogle Scholar
  157. 157.
    Sullivan CR, Mielnik CA, Funk A, O'Donovan SM, Bentea E, Pletnikov M, et al. Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia. Sci Rep. 2019; 9(1):5087Google Scholar
  158. 158.
    Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–97, 643.CrossRefPubMedGoogle Scholar
  159. 159.
    Park C, Park SK. Molecular links between mitochondrial dysfunctions and schizophrenia. Mol Cells. 2012;33(2):105–10.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Flippo KH, Strack S. An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res. 2017;187:26–32.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Singh N, Hroudová J, Fišar Z. In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol Neurobiol. 2017;54(8):5894–904.CrossRefPubMedGoogle Scholar
  162. 162.
    Lee NY, Choi HO, Kang YS. The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem Res. 2012;37(7):1499–507.CrossRefPubMedGoogle Scholar
  163. 163.
    Paul C, Bolton C. Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-D-aspartate receptor antagonist memantine. J Pharmacol Exp Ther. 2002;302(1):50–7.CrossRefPubMedGoogle Scholar
  164. 164.
    Arias E, Alés E, Gabilan NH, Cano-Abad MF, Villarroya M, García AG, et al. Galantamine prevents apoptosis induced by beta-amyloid and thapsigargin: involvement of nicotinic acetylcholine receptors. Neuropharmacology. 2004;46(1):103–14.CrossRefPubMedGoogle Scholar
  165. 165.
    Miguel-Hidalgo JJ, Paul IA, Wanzo V, Banerjee PK. Memantine prevents cognitive impairment and reduces Bcl-2 and caspase 8 immunoreactivity in rats injected with amyloid β1-40. Eur J Pharmacol. 2012;692(1–3):38–45.CrossRefPubMedGoogle Scholar
  166. 166.
    Noda Y, Mouri A, Ando Y, Waki Y, Yamada SN, Yoshimi A, et al. Galantamine ameliorates the impairment of recognition memory in mice repeatedly treated with methamphetamine: involvement of allosteric potentiation of nicotinic acetylcholine receptors and dopaminergic-ERK1/2 systems. Int J Neuropsychopharmacol. 2010;13(10):1343–54.CrossRefPubMedGoogle Scholar
  167. 167.
    Almeida RC, Souza DG, Soletti RC, López MG, Rodrigues AL, Gabilan NH. Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice. Neurosci Lett. 2006;395(2):93–7.CrossRefPubMedGoogle Scholar
  168. 168.
    Unger C, Svedberg MM, Yu WF, Hedberg MM, Nordberg A. Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice. J Pharmacol Exp Ther. 2006;317(1):30–6.CrossRefPubMedGoogle Scholar
  169. 169.
    Unger C, Svedberg MM, Schutte M, Bednar I, Nordberg A. Effect of memantine on the alpha 7 neuronal nicotinic receptors, synaptophysin- and low molecular weight MAP-2 levels in the brain of transgenic mice over-expressing human acetylcholinesterase. J Neural Transm (Vienna). 2005;112(2):255–68.CrossRefGoogle Scholar
  170. 170.
    Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019 Apr;24(4):549–61.Google Scholar
  171. 171.
    Koola MM, Pillai A, Looney SW. Targeting nicotinic and NMDA receptors concurrently: Rocket science, common sense or game changer? Schizophr. Bull. 2019 Apr;45(2):S248-S248·Google Scholar
  172. 172.
    Spedding M. New directions for drug discovery. Dialogues Clin Neurosci. 2006;8(3):295-301Google Scholar
  173. 173.
    Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31(5):234–42.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Díez Á, Suazo V, Casado P, Martín-Loeches M, Molina V. Gamma power and cognition in patients with schizophrenia and their first-degree relatives. Neuropsychobiology. 2014;69(2):120–8.CrossRefPubMedGoogle Scholar
  175. 175.
    Sun C, Zhou P, Wang C, Fan Y, Tian Q, Dong F, et al. Defects of gamma oscillations in auditory steady-state evoked potential of schizophrenia. Shanghai Arch Psychiatry. 2018;30(1):27–38.PubMedGoogle Scholar
  176. 176.
    Zhou TH, Mueller NE, Spencer KM, Mallya SG, Lewandowski KE, Norris LA, et al. Auditory steady state response deficits are associated with symptom severity and poor functioning in patients with psychotic disorder. Schizophr Res. 2018;201:278–86.CrossRefPubMedGoogle Scholar
  177. 177.
    Leicht G, Vauth S, Polomac N, Andreou C, Rauh J, Mußmann M, et al. EEG-informed fMRI reveals a disturbed gamma-band-specific network in subjects at high risk for psychosis. Schizophr Bull. 2016;42(1):239–49.PubMedGoogle Scholar
  178. 178.
    Gandal MJ, Edgar JC, Klook K, Siegel SJ. Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology. 2012;62(3):1504–18.CrossRefPubMedGoogle Scholar
  179. 179.
    Uhlhaas PJ, Singer W. High-frequency oscillations and the neurobiology of schizophrenia. Dialogues Clin Neurosci. 2013;15(3):301–13.PubMedPubMedCentralGoogle Scholar
  180. 180.
    O'Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol. 2013;62:101–12.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Phillips KG, Uhlhaas PJ. Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges. J Psychopharmacol. 2015;29(2):155–68.CrossRefPubMedGoogle Scholar
  182. 182.
    Tada M, Nagai T, Kirihara K, Koike S, Suga M, Araki T, et al. Differential alterations of auditory gamma oscillatory responses between pre-onset high-risk individuals and first-episode schizophrenia. Cereb Cortex. 2016;26(3):1027–35.CrossRefPubMedGoogle Scholar
  183. 183.
    Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378(6552):75–8.CrossRefPubMedGoogle Scholar
  184. 184.
    Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 1995;373(6515):612–5.CrossRefPubMedGoogle Scholar
  186. 186.
    Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17(5):537–48.CrossRefPubMedGoogle Scholar
  187. 187.
    Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38(5):950–7.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Sullivan EM, Timi P, Hong LE, O'Donnell P. Effects of NMDA and GABA-A receptor antagonism on auditory steady-state synchronization in awake behaving rats. Int J Neuropsychopharmacol. 2015;18(7):pyu118.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Stoiljkovic M, Kelley C, Nagy D, Leventhal L, Hajós M. Selective activation of α7 nicotinic acetylcholine receptors augments hippocampal oscillations. Neuropharmacology. 2016;110:102–8.CrossRefPubMedGoogle Scholar
  190. 190.
    Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, et al. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience. 2015;301:49–60.CrossRefPubMedGoogle Scholar
  191. 191.
    Hasam-Henderson LA, Gotti GC, Mishto M, Klisch C, Gerevich Z, Geiger JRP, et al. NMDA-receptor inhibition and oxidative stress during hippocampal maturation differentially alter parvalbumin expression and gamma-band activity. Sci Rep. 2018;8(1):9545.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Ballesteros A, Summerfelt A, Du X, Jiang P, Chiappelli J, Tagamets M, et al. Electrophysiological intermediate biomarkers for oxidative stress in schizophrenia. Clin Neurophysiol. 2013;124(11):2209–15.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    • Hafizi S, Da Silva T, Meyer JH, Kiang M, Houle S, Remington G, et al. Interaction between TSPO-a neuroimmune marker-and redox status in clinical high risk for psychosis: a PET-MRS study. Neuropsychopharmacology. 2018;43(8):1700–5 This study showed that the redox system is abnormal in clinical high risk for psychosis. CrossRefPubMedGoogle Scholar
  194. 194.
    Lavoie S, Berger M, Schlögelhofer M, Schäfer MR, Rice S, Kim SW, et al. Erythrocyte glutathione levels as long-term predictor of transition to psychosis. Transl Psychiatry. 2017;7(3):e1064.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E, et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology. 2014;41:23–32.CrossRefPubMedGoogle Scholar
  196. 196.
    Zeni-Graiff M, Rizzo LB, Mansur RB, Maurya PK, Sethi S, Cunha GR, et al. Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophr Res. 2016;176(2–3):191–5.CrossRefPubMedGoogle Scholar
  197. 197.
    Kantrowitz JT, Woods SW, Petkova E, Cornblatt B, Corcoran CM, Chen H, et al. D-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry. 2015;2(5):403–12.CrossRefPubMedGoogle Scholar
  198. 198.
    Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD, et al. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull. 2015;41(2):419–28.CrossRefPubMedGoogle Scholar
  199. 199.
    Koola MM. Can N-acetylcysteine, varenicline, or the combination prevent psychosis by enhancing mismatch negativity? Schizophr Res. In press.Google Scholar
  200. 200.
    Demro C, Rowland L, Wijtenburg SA, Waltz J, Gold J, Kline E, et al. Glutamatergic metabolites among adolescents at risk for psychosis. Psychiatry Res. 2017;257:179–85.CrossRefPubMedGoogle Scholar
  201. 201.
    Egerton A, Fusar-Poli P, Stone JM. Glutamate and psychosis risk. Curr Pharm Des. 2012;18(4):466–78.CrossRefPubMedGoogle Scholar
  202. 202.
    Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, et al. Glutathione precursor, N-acetylcysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology. 2008;33(9):2187–99.CrossRefPubMedGoogle Scholar
  203. 203.
    Conus P, Seidman LJ, Fournier M, Xin L, Cleusix M, Baumann PS, et al. N-acetylcysteine in a double-blind randomized placebo-controlled trial: toward biomarker-guided treatment in early psychosis. Schizophr Bull. 2018;44(2):317–27.CrossRefPubMedGoogle Scholar
  204. 204.
    • Nelson B, Yuen HP, Wood SJ, Lin A, Spiliotacopoulos D, Bruxner A, et al. Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: the PACE 400 study. JAMA Psychiatry. 2013;70(8):793–802 This article showed that there is adequate time to intervene in patients at ultra high risk for psychosis because of the long prodromal phase. CrossRefPubMedGoogle Scholar
  205. 205.
    Löffler W, Häfner H. Long prodromal phase in schizophrenia. By recognizing it, the prognosis of the patient can be significantly improved. MMW Fortschr Med. 2000;142(10):26–9.PubMedGoogle Scholar
  206. 206.
    Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res. 2003;60(1):21–32.CrossRefPubMedGoogle Scholar
  207. 207.
    Do KQ, Cuenod M, Hensch TK. Targeting oxidative stress and aberrant critical period plasticity in the developmental trajectory to schizophrenia. Schizophr Bull. 2015;41(4):835–46.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Rowland LM, Summerfelt A, Wijtenburg SA, Du X, Chiappelli JJ, Krishna N, et al. Frontal glutamate and γ-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia. JAMA Psychiatry. 2016;73(2):166–74.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Cabungcal JH, Counotte DS, Lewis E, Tejeda HA, Piantadosi P, Pollock C, et al. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron. 2014;83(5):1073–84.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    •• Sawa A, Seidman LJ. Is prophylactic psychiatry around the corner? Combating adolescent oxidative stress for adult psychosis and schizophrenia. Neuron. 2014;83(5):991–3 This article argues the importance of antioxidant treatment in the prevention of schizophrenia. CrossRefPubMedGoogle Scholar
  211. 211.
    Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016;176(1):52–71.CrossRefPubMedGoogle Scholar
  212. 212.
    Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP. Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res. 2003;62(3):195–204.CrossRefPubMedGoogle Scholar
  213. 213.
    Atmaca M, Tezcan E, Kuloglu M, Ustundag B, Kirtas O. The effect of extract of ginkgo biloba addition to olanzapine on therapeutic effect and antioxidant enzyme levels in patients with schizophrenia. Psychiatry Clin Neurosci. 2005;59(6):652–6.CrossRefPubMedGoogle Scholar
  214. 214.
    Zhang XY, Zhou DF, Cao LY, Wu GY. The effects of Ginkgo biloba extract added to haloperidol on peripheral T cell subsets in drug-free schizophrenia: a double-blind, placebo-controlled trial. Psychopharmacology. 2006;188(1):12–7.CrossRefPubMedGoogle Scholar
  215. 215.
    Ritsner MS, Gibel A, Shleifer T, Boguslavsky I, Zayed A, Maayan R, et al. Pregnenolone and dehydroepiandrosterone as an adjunctive treatment in schizophrenia and schizoaffective disorder: an 8-week, double-blind, randomized, controlled, 2-center, parallel-group trial. J Clin Psychiatry. 2010;71(10):1351–62.CrossRefPubMedGoogle Scholar
  216. 216.
    Bodkin JA, Siris SG, Bermanzohn PC, Hennen J, Cole JO. Double-blind, placebo-controlled, multicenter trial of selegiline augmentation of antipsychotic medication to treat negative symptoms in outpatients with schizophrenia. Am J Psychiatry. 2005;162(2):388–90.CrossRefPubMedGoogle Scholar
  217. 217.
    Magalhães PV, Dean O, Andreazza AC, Berk M, Kapczinski F. Antioxidant treatments for schizophrenia. Cochrane Database Syst Rev. 2016;2:CD008919.PubMedGoogle Scholar
  218. 218.
    Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia--a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. 2008;64(5):361–8.CrossRefPubMedGoogle Scholar
  219. 219.
    Brunstein MG, Ghisolfi ES, Ramos FL, Lara DR. A clinical trial of adjuvant allopurinol therapy for moderately refractory schizophrenia. J Clin Psychiatry. 2005;66(2):213–9.CrossRefPubMedGoogle Scholar
  220. 220.
    Dickerson FB, Stallings CR, Origoni AE, Sullens A, Khushalani S, Sandson N, et al. A double-blind trial of adjunctive allopurinol for schizophrenia. Schizophr Res. 2009;109(1–3):66–9.CrossRefPubMedGoogle Scholar
  221. 221.
    Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M. A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry. 2001;158(12):2071–4.CrossRefPubMedGoogle Scholar
  222. 222.
    Ehrenreich H, Hinze-Selch D, Stawicki S, Aust C, Knolle-Veentjer S, Wilms S, et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry. 2007;12(2):206–20.CrossRefPubMedGoogle Scholar
  223. 223.
    Zeinoddini A, Ahadi M, Farokhnia M, Rezaei F, Tabrizi M, Akhondzadeh S. L-lysine as an adjunct to risperidone in patients with chronic schizophrenia: a double-blind, placebo-controlled, randomized trial. J Psychiatr Res. 2014;59:125–31.CrossRefPubMedGoogle Scholar
  224. 224.
    Kelly DL, Sullivan KM, McEvoy JP, McMahon RP, Wehring HJ, Gold JM, et al. Adjunctive minocycline in clozapine-treated schizophrenia patients with persistent symptoms. J Clin Psychopharmacol. 2015;35(4):374–81.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. Lancet Psychiatry. 2018;5(11):885–94.CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Weiser M, Levi L, Burshtein S, Chiriță R, Cirjaliu D, Gonen I, et al. The effect of minocycline on symptoms in schizophrenia: results from a randomized controlled trial. Schizophr Res. in press.Google Scholar
  227. 227.
    Keefe RS, Buchanan RW, Marder SR, Schooler NR, Dugar A, Zivkov M, et al. Clinical trials of potential cognitive-enhancing drugs in schizophrenia: what have we learned so far? Schizophr Bull. 2013;39(2):417–35.CrossRefPubMedGoogle Scholar
  228. 228.
    Bumb JM, Enning F, Leweke FM. Drug repurposing and emerging adjunctive treatments for schizophrenia. Expert Opin Pharmacother. 2015;16(7):1049–67.CrossRefPubMedGoogle Scholar
  229. 229.
    Kantrowitz JT. Managing negative symptoms of schizophrenia: how far have we come? CNS Drugs. 2017;31(5):373–88.CrossRefPubMedGoogle Scholar
  230. 230.
    •• Girgis RR, Zoghbi AW, Javitt DC, Lieberman JA. The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: a critical and comprehensive review. J Psychiatr Res J Psychiatr Res. 2019;108:57–83 This is a comprehensive review of 250 randomized controlled trials with one add-on medication, highlighting that one add-on medication is inadequate to treat three domains of psychopathology. CrossRefPubMedGoogle Scholar
  231. 231.
    Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17(12):1206–27.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull. 2014;40(1):181–91.CrossRefPubMedGoogle Scholar
  233. 233.
    Chen AT, Chibnall JT, Nasrallah HA. Placebo-controlled augmentation trials of the antioxidant NAC in schizophrenia: a review. Ann Clin Psychiatry. 2016;28(3):190–6.PubMedGoogle Scholar
  234. 234.
    Zheng W, Zhang QE, Cai DB, Yang XH, Qiu Y, Ungvari GS, et al. N-acetylcysteine for major mental disorders: a systematic review and meta-analysis of randomized controlled trials. Acta Psychiatr Scand. 2018;137(5):391–400.CrossRefPubMedGoogle Scholar
  235. 235.
    Solmi M, Veronese N, Thapa N, Facchini S, Stubbs B, Fornaro M, et al. Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr. 2017;22(5):415–26.CrossRefPubMedGoogle Scholar
  236. 236.
    Xiang YQ, Zheng W, Wang SB, Yang XH, Cai DB, Ng CH, et al. Adjunctive minocycline for schizophrenia: a meta-analysis of randomized controlled trials. Eur Neuropsychopharmacol. 2017;27(1):8–18.CrossRefPubMedGoogle Scholar
  237. 237.
    Kelly DL, Wehring HJ. Minocycline as an evidence-based adjunct treatment in schizophrenia. Psychiatr Ann. 2018;48(5):224–31.CrossRefGoogle Scholar
  238. 238.
    Abdel Baki SG, Schwab B, Haber M, Fenton AA, Bergold PJ. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS One. 2010;5(8):e12490.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Haber M, Abdel Baki SG, Grin'kina NM, Irizarry R, Ershova A, Orsi S, et al. Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol. 2013;249:169–77.CrossRefPubMedGoogle Scholar
  240. 240.
    Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J, et al. Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab. 2018;38(8):1312–26.CrossRefPubMedGoogle Scholar
  241. 241.
    Sangobowale M, Nikulina E, Bergold PJ. Minocycline plus N-acetylcysteine protect oligodendrocytes when first dosed 12 hours after closed head injury in mice. Neurosci Lett. 2018;682:16–20.CrossRefPubMedGoogle Scholar
  242. 242.
    Sangobowale MA, Grin'kina NM, Whitney K, Nikulina E, St Laurent-Ariot K, Ho JS, et al. Minocycline plus N-acetylcysteine reduce behavioral deficits and improve histology with a clinically useful time window. J Neurotrauma. in press.Google Scholar
  243. 243.
    Koola MM. Antipsychotic-minocycline-acetylcysteine combination for positive, cognitive, and negative symptoms of schizophrenia. Asian J Psychiatr. 2019;40:100–2.CrossRefPubMedGoogle Scholar
  244. 244.
    Sahoo AK, Dandapat J, Dash UC, Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J Ethnopharmacol. 2018;215:42–73.CrossRefPubMedGoogle Scholar
  245. 245.
    •• Sullivan EM, O'Donnell P. Inhibitory interneurons, oxidative stress, and schizophrenia. Schizophr Bull. 2012;38(3):373–6 This article argued that a combination treatment may be needed to target oxidative stress in schizophrenia and prodrome. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maju Mathew Koola
    • 1
    Email author
  • Samir Kumar Praharaj
    • 2
  • Anilkumar Pillai
    • 3
  1. 1.Department of Psychiatry and Behavioral SciencesGeorge Washington University School of Medicine and Health SciencesWashington, DCUSA
  2. 2.Department of Psychiatry, Kasturba Medical College, ManipalManipal Academy of Higher EducationManipalIndia
  3. 3.Department of Psychiatry and Health Behavior, Medical College of GeorgiaAugusta UniversityAugustaUSA

Personalised recommendations