Sarcopenia in Liver Transplantation

  • John MontgomeryEmail author
  • Michael Englesbe
Frailty and Gerontology (M McAdams Demarco, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Frailty and Gerontology


Purpose of Review

Sarcopenia is highly prevalent in end-stage liver disease (ESLD) patients and has been linked to poor outcomes on the wait list and post-transplantation. This current perspectives article reviews the ongoing challenges to define sarcopenia in ESLD patients, describes associations of sarcopenia with wait list and post-transplantation outcomes, and provides summarized data on efforts to prevent and treat sarcopenia through novel interventions.

Recent Findings

Supervised exercise programs improve muscle strength, but muscle mass outcomes are limited by short study follow-up times. Branched-chain amino acid supplementation may ameliorate sarcopenia in ESLD patients, but studies are limited by low participant numbers and confounding. Myostatin inhibition is shown to improve sarcopenia in elderly, frail patients; further study is needed in ESLD patients. Correction of low testosterone improves sarcopenia in male ESLD patients.


Recent literature supports sarcopenia as an independent risk factor for poor outcomes in ESLD patients. Ongoing study is limited by poor standardization of sarcopenia definition and relevant muscle mass cutoffs. Supervised exercise programs should be encouraged for all ESLD patients. More advanced therapies require further clinical investigation before their widespread use.


Liver transplantation Sarcopenia Muscle mass Muscle strength Outcomes Exercise Branched-chain amino acids Myostatin Testosterone 


Compliance with Ethical Standards

Conflict of Interest

John Montgomery declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Rosenberg I. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989;50:1231–4.CrossRefGoogle Scholar
  2. 2.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.CrossRefGoogle Scholar
  3. 3.
    Jones SE, Maddocks M, Kon SS, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–8.CrossRefGoogle Scholar
  4. 4.
    Androga L, Sharma D, Amodu A, Abramowitz MK. Sarcopenia, obesity, and mortality in US adults with and without chronic kidney disease. Kidney Int Rep. 2017;2(2):201–11.CrossRefGoogle Scholar
  5. 5.
    Sinclair AJ, Abdelhafiz AH, Rodriguez-Manas L. Frailty and sarcopenia - newly emerging and high impact complications of diabetes. J Diabetes Complicat. 2017;31(9):1465–73.CrossRefGoogle Scholar
  6. 6.
    Caimmi C, Caramaschi P, Venturini A, Bertoldo E, Vantaggiato E, Viapiana O, et al. Malnutrition and sarcopenia in a large cohort of patients with systemic sclerosis. Clin Rheumatol. 2018;37(4):987–97.CrossRefGoogle Scholar
  7. 7.
    Cramer JT, Cruz-Jentoft AJ, Landi F, Hickson M, Zamboni M, Pereira SL, et al. Impacts of high-protein oral nutritional supplements among malnourished men and women with sarcopenia: a multicenter, randomized, double-blinded, controlled trial. J Am Med Dir Assoc. 2016;17(11):1044–55.CrossRefGoogle Scholar
  8. 8.
    Kim JS, Wilson JM, Lee SR. Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem. 2010;21(1):1–13.CrossRefGoogle Scholar
  9. 9.
    Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010;91(4):1123s–7s.CrossRefGoogle Scholar
  10. 10.
    van Vugt JL, Levolger S, de Bruin RW, van Rosmalen J, Metselaar HJ, JN IJ. Systematic review and meta-analysis of the impact of computed tomography-assessed skeletal muscle mass on outcome in patients awaiting or undergoing liver transplantation. Am J Transplant. 2016;16(8):2277–92.CrossRefGoogle Scholar
  11. 11.
    Englesbe MJ, Patel SP, He K, Lynch RJ, Schaubel DE, Harbaugh C, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211(2):271–8.CrossRefGoogle Scholar
  12. 12.
    Durand F, Buyse S, Francoz C, Laouénan C, Bruno O, Belghiti J, et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol. 2014;60(6):1151–7.CrossRefGoogle Scholar
  13. 13.
    Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl. 2012;18(10):1209–16.CrossRefGoogle Scholar
  14. 14.
    Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Shirai H, Yagi S, et al. Impact of skeletal muscle mass index, intramuscular adipose tissue content, and visceral to subcutaneous adipose tissue area ratio on early mortality of living donor liver transplantation. Transplantation. 2017;101(3):565–74.CrossRefGoogle Scholar
  15. 15.
    Waits SA, Kim EK, Terjimanian MN, Tishberg LM, Harbaugh CM, Sheetz KH, et al. Morphometric age and mortality after liver transplant. JAMA Surg. 2014;149(4):335–40.CrossRefGoogle Scholar
  16. 16.
    Han A, Bokshan SL, Marcaccio SE, DePasse JM, Daniels AH. Diagnostic criteria and clinical outcomes in sarcopenia research: a literature review. J Clin Med. 2018;7(4).Google Scholar
  17. 17.
    Wang CW, Feng S, Covinsky KE, Hayssen H, Zhou LQ, Yeh BM, et al. A comparison of muscle function, mass, and quality in liver transplant candidates: results from the functional assessment in liver transplantation study. Transplantation. 2016;100(8):1692–8.CrossRefGoogle Scholar
  18. 18.
    Yadav A, Chang YH, Carpenter S, et al. Relationship between sarcopenia, six-minute walk distance and health-related quality of life in liver transplant candidates. Clin Transpl. 2015;29(2):134–41.CrossRefGoogle Scholar
  19. 19.
    Giusto M, Lattanzi B, Albanese C, Galtieri A, Farcomeni A, Giannelli V, et al. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastroenterol Hepatol. 2015;27(3):328–34.CrossRefGoogle Scholar
  20. 20.
    Wada Y, Kamishima T, Shimamura T, Kawamura N, Yamashita K, Sutherland K, et al. Pre-operative volume rather than area of skeletal muscle is a better predictor for post-operative risks for respiratory complications in living-donor liver transplantation. Br J Radiol. 2017;90(1072):20160938.CrossRefGoogle Scholar
  21. 21.
    Carey EJ, Lai JC, Wang CW, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017;23(5):625–33.CrossRefGoogle Scholar
  22. 22.
    Golse N, Bucur PO, Ciacio O, et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. Liver Transpl. 2017;23(2):143–54.CrossRefGoogle Scholar
  23. 23.
    Kalafateli M, Mantzoukis K, Choi Yau Y, Mohammad AO, Arora S, Rodrigues S, et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J Cachexia Sarcopenia Muscle. 2017;8(1):113–21.CrossRefGoogle Scholar
  24. 24.
    Nardelli S, Lattanzi B, Torrisi S, Greco F, Farcomeni A, Gioia S, et al. Sarcopenia is risk factor for development of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt placement. Clin Gastroenterol Hepatol. 2017;15(6):934–6.CrossRefGoogle Scholar
  25. 25.
    Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int. 2018;12:377–86.CrossRefGoogle Scholar
  26. 26.
    Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JXQ, et al. Inclusion of sarcopenia within MELD (MELD-sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015;6:e102.CrossRefGoogle Scholar
  27. 27.
    van Vugt JLA, Alferink LJM, Buettner S, et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: a competing risk analysis in a national cohort. J Hepatol. 2017.Google Scholar
  28. 28.
    Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10(2):166–73 173.e161.CrossRefGoogle Scholar
  29. 29.
    van Vugt JLA, Buettner S, Alferink LJM, Bossche N, de Bruin RWF, Darwish Murad S, et al. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation-a retrospective study. Transpl Int. 2018;31(2):165–74.CrossRefGoogle Scholar
  30. 30.
    Kaido T, Ogawa K, Fujimoto Y, Ogura Y, Hata K, Ito T, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013;13(6):1549–56.CrossRefGoogle Scholar
  31. 31.
    Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K, Fontes P, et al. Objective radiologic assessment of body composition in patients with end-stage liver disease: going beyond the BMI. Transplantation. 2013;95(4):617–22.CrossRefGoogle Scholar
  32. 32.
    DiMartini A, Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K, et al. Muscle mass predicts outcomes following liver transplantation. Liver Transpl. 2013;19(11):1172–80.CrossRefGoogle Scholar
  33. 33.
    Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ, Cai S, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl. 2013;19(12):1396–402.CrossRefGoogle Scholar
  34. 34.
    Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017;12(10):e0186990.CrossRefGoogle Scholar
  35. 35.
    Hamaguchi Y, Kaido T, Okumura S, Fujimoto Y, Ogawa K, Mori A, et al. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transpl. 2014;20(11):1413–9.CrossRefGoogle Scholar
  36. 36.
    Lee CS, Cron DC, Terjimanian MN, Canvasser LD, Mazurek AA, Vonfoerster E, et al. Dorsal muscle group area and surgical outcomes in liver transplantation. Clin Transpl. 2014;28(10):1092–8.CrossRefGoogle Scholar
  37. 37.
    Masuda T, Shirabe K, Ikegami T, Harimoto N, Yoshizumi T, Soejima Y, et al. Sarcopenia is a prognostic factor in living donor liver transplantation. Liver Transpl. 2014;20(4):401–7.CrossRefGoogle Scholar
  38. 38.
    Izumi T, Watanabe J, Tohyama T, Takada Y. Impact of psoas muscle index on short-term outcome after living donor liver transplantation. Turk J Gastroenterol. 2016;27(4):382–8.CrossRefGoogle Scholar
  39. 39.
    Terjimanian MN, Harbaugh CM, Hussain A, Olugbade KO Jr, Waits SA, Wang SC, et al. Abdominal adiposity, body composition and survival after liver transplantation. Clin Transpl. 2016;30(3):289–94.CrossRefGoogle Scholar
  40. 40.
    Underwood PW, Cron DC, Terjimanian MN, Wang SC, Englesbe MJ, Waits SA. Sarcopenia and failure to rescue following liver transplantation. Clin Transpl. 2015;29(12):1076–80.CrossRefGoogle Scholar
  41. 41.
    Shirai H, Kaido T, Hamaguchi Y, et al. Preoperative low muscle mass has a strong negative effect on pulmonary function in patients undergoing living donor liver transplantation. Nutrition. 2018;45:1–10.CrossRefGoogle Scholar
  42. 42.
    Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Shirai H, Yao S, et al. Proposal for new selection criteria considering pre-transplant muscularity and visceral adiposity in living donor liver transplantation. J Cachexia Sarcopenia Muscle. 2018;9(2):246–54.CrossRefGoogle Scholar
  43. 43.
    Jeon JY, Wang HJ, Ock SY, Xu W, Lee JD, Lee JH, et al. Newly developed sarcopenia as a prognostic factor for survival in patients who underwent liver transplantation. PLoS One. 2015;10(11):e0143966.CrossRefGoogle Scholar
  44. 44.
    Chae MS, Moon KU, Jung JY, Choi HJ, Chung HS, Park CS, et al. Perioperative loss of psoas muscle is associated with patient survival in living donor liver transplantation. Liver Transpl. 2018;24(5):623–33.CrossRefGoogle Scholar
  45. 45.
    Carey EJ, Steidley DE, Aqel BA, Byrne TJ, Mekeel KL, Rakela J, et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010;16(12):1373–8.CrossRefGoogle Scholar
  46. 46.
    Dunn MA, Josbeno DA, Schmotzer AR, et al. The gap between clinically assessed physical performance and objective physical activity in liver transplant candidates. Liver Transpl. 2016;22(10):1324–32.CrossRefGoogle Scholar
  47. 47.
    Pattullo V, Duarte-Rojo A, Soliman W, Vargas-Vorackova F, Sockalingam S, Fantus IG, et al. A 24-week dietary and physical activity lifestyle intervention reduces hepatic insulin resistance in the obese with chronic hepatitis C. Liver Int. 2013;33(3):410–9.CrossRefGoogle Scholar
  48. 48.
    Roman E, Torrades MT, Nadal MJ, et al. Randomized pilot study: effects of an exercise programme and leucine supplementation in patients with cirrhosis. Dig Dis Sci. 2014;59(8):1966–75.CrossRefGoogle Scholar
  49. 49.
    Debette-Gratien M, Tabouret T, Antonini MT, Dalmay F, Carrier P, Legros R, et al. Personalized adapted physical activity before liver transplantation: acceptability and results. Transplantation. 2015;99(1):145–50.CrossRefGoogle Scholar
  50. 50.
    Macias-Rodriguez RU, Ilarraza-Lomeli H, Ruiz-Margain A, et al. Changes in hepatic venous pressure gradient induced by physical exercise in cirrhosis: results of a pilot randomized open clinical trial. Clin Transl Gastroenterol. 2016;7(7):e180.CrossRefGoogle Scholar
  51. 51.
    Berzigotti A, Albillos A, Villanueva C, et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology. 2017;65(4):1293–305.CrossRefGoogle Scholar
  52. 52.
    Roman E, Garcia-Galceran C, Torrades T, et al. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomized clinical trial. PLoS One. 2016;11(3):e0151652.CrossRefGoogle Scholar
  53. 53.
    •• Zenith L, Meena N, Ramadi A, et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(11):1920–1926.e1922. Improvement of sarcopenia components over relatively short time frame supports inclusion of supervised exercise program into clinical practice. CrossRefGoogle Scholar
  54. 54.
    Zenith L, Qamar H, Myers R, et al. Severe muscle mass loss in cirrhosis: can bedside tools be used to predict a CT or MRI diagnosis of sarcopenia. Can J Gastroenterol. 2013;27(Suppl A):83A.Google Scholar
  55. 55.
    Riebe D, Franklin BA, Thompson PD, et al. Updating ACSM’s recommendations for exercise preparticipation health screening. Med Sci Sports Exerc. 2015;47(11):2473–9.CrossRefGoogle Scholar
  56. 56.
    Tandon P, Ismond KP, Riess K, Duarte-Rojo A, al-Judaibi B, Dunn MA, et al. Exercise in cirrhosis: translating evidence and experience to practice. J Hepatol. 2018;69(5):1164–77.CrossRefGoogle Scholar
  57. 57.
    Chen HW, Dunn MA. Muscle at risk: the multiple impacts of ammonia on sarcopenia and frailty in cirrhosis. Clin Transl Gastroenterol. 2016;7:e170.CrossRefGoogle Scholar
  58. 58.
    Kato M, Miwa Y, Tajika M, Hiraoka T, Muto Y, Moriwaki H. Preferential use of branched-chain amino acids as an energy substrate in patients with liver cirrhosis. Intern Med. 1998;37(5):429–34.CrossRefGoogle Scholar
  59. 59.
    Moriwaki H, Miwa Y, Tajika M, Kato M, Fukushima H, Shiraki M. Branched-chain amino acids as a protein- and energy-source in liver cirrhosis. Biochem Biophys Res Commun. 2004;313(2):405–9.CrossRefGoogle Scholar
  60. 60.
    Tsien C, Davuluri G, Singh D, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61(6):2018–29.CrossRefGoogle Scholar
  61. 61.
    Toshima T, Shirabe K, Kurihara T, Itoh S, Harimoto N, Ikegami T, et al. Profile of plasma amino acids values as a predictor of sepsis in patients following living donor liver transplantation: special reference to sarcopenia and postoperative early nutrition. Hepatol Res. 2015;45(12):1170–7.CrossRefGoogle Scholar
  62. 62.
    Kinny-Koster B, Bartels M, Becker S, et al. Plasma amino acid concentrations predict mortality in patients with end-stage liver disease. PLoS One. 2016;11(7):e0159205.CrossRefGoogle Scholar
  63. 63.
    Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol. 2005;3(7):705–13.CrossRefGoogle Scholar
  64. 64.
    Kumada H, Okanoue T, Onji M, Moriwaki H, Izumi N, Tanaka E, et al. Guidelines for the treatment of chronic hepatitis and cirrhosis due to hepatitis C virus infection for the fiscal year 2008 in Japan. Hepatol Res. 2010;40(1):8–13.CrossRefGoogle Scholar
  65. 65.
    Hiraoka A, Michitaka K, Kiguchi D, Izumoto H, Ueki H, Kaneto M, et al. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1416–23.CrossRefGoogle Scholar
  66. 66.
    •• Uojima H, Sakurai S, Hidaka H, et al. Effect of branched-chain amino acid supplements on muscle strength and muscle mass in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1402–7. Treatment with BCAAs improved muscle strength in ESLD patients when compared with controls. Given low side effect profile, this encourages clinical adoption. However, further US trials with larger number of sarcopenic ESLD patients and longer follow-up are needed. CrossRefGoogle Scholar
  67. 67.
    Qiu J, Thapaliya S, Runkana A, Yang Y, Tsien C, Mohan ML, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-kappaB-mediated mechanism. Proc Natl Acad Sci U S A. 2013;110(45):18162–7.CrossRefGoogle Scholar
  68. 68.
    Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle. 2017;8(6):915–25.CrossRefGoogle Scholar
  69. 69.
    Elkina Y, von Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle. 2011;2(3):143–51.CrossRefGoogle Scholar
  70. 70.
    •• Becker C, Lord SR, Studenski SA, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 2015;3(12):948–57 Novel inhibition of myostatin has shown efficacy in phase II study of elderly, frail, non-cirrhotic patients to decrease sarcopenia. Further studies in ESLD patients are necessary. CrossRefGoogle Scholar
  71. 71.
    Grossmann M, Hoermann R, Gani L, Chan I, Cheung A, Gow PJ, et al. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin Endocrinol. 2012;77(2):323–8.CrossRefGoogle Scholar
  72. 72.
    Moctezuma-Velazquez C, Low G, Mourtzakis M, et al. Association between low testosterone levels and sarcopenia in cirrhosis: a cross-sectional study. Ann Hepatol. 2018;17(4):615–23.CrossRefGoogle Scholar
  73. 73.
    Sinclair M, Gow PJ, Grossmann M, Shannon A, Hoermann R, Angus PW. Low serum testosterone is associated with adverse outcome in men with cirrhosis independent of the model for end-stage liver disease score. Liver Transpl. 2016;22(11):1482–90.CrossRefGoogle Scholar
  74. 74.
    •• Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol. 2016;65(5):906–913. Treatment of low testosterone in ESLD patients is associated with decreased sarcopenia, but further studies in US population are needed before clinical adoption can be recommended. Google Scholar
  75. 75.
    Hassan J, Barkin J. Testosterone deficiency syndrome: benefits, risks, and realities associated with testosterone replacement therapy. Can J Urol. 2016;23(Suppl 1):20–30.PubMedGoogle Scholar
  76. 76.
    Sinclair M, Angus PW, Gow PJ, Hoermann R, Mogilevski T, Grossmann M. Low-serum testosterone levels pre-liver transplantation are associated with reduced rates of early acute allograft rejection in men. Transplantation. 2014;98(7):788–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of Michigan Health SystemAnn ArborUSA

Personalised recommendations