Artificial Lungs: Current Status and Future Directions

  • Ryan A. Orizondo
  • Arturo J. Cardounel
  • Robert Kormos
  • Pablo G. SanchezEmail author
Thoracic Transplantation (J Kobashigawa and J Patel, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Thoracic Transplantation


Purpose of Review

Although lung transplantation can be used to treat lung failure, limited donor organ availability creates a pressing need for improved artificial lung technology. This review discusses recent developments and future research pathways for respiratory assist devices and regenerative therapies intended to treat advanced lung disease.

Recent Findings

Hollow fiber membrane gas exchangers can be used to bridge lung failure patients to transplantation. Engineering improvements to such devices are on the verge of enabling longer term wearable systems that simplify and improve support. Progress with microchannel-based devices provides hope of smaller, more biomimetic devices that may even enable implantation; however, further development and testing are needed. Advances in cell-based technologies and tissue engineering have enabled early proof of concept of bioartificial lungs with properties similar to the native organ.


Recent progress with artificial lungs has enabled better treatment as a bridge therapy. Continued advances in both engineering and biology will be necessary to achieve a truly implantable artificial lung capable of destination therapy.


Artificial lungs Oxygenator Lung disease Lung transplantation Extracorporeal membrane oxygenation 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Valapour M, Lehr CJ, Skeans MA, Smith JM, Carrico R, Uccellini K, et al. OPTN/SRTR 2016 annual data report: lung. American Journal of Transplantation. 2018 Jan;18:363–433.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Heron M. Deaths: Leading Causes for 2016. 77.Google Scholar
  3. 3.
    • Hayanga AJ, Aboagye J, Esper S, Shigemura N, Bermudez CA, D’Cunha J, et al. Extracorporeal membrane oxygenation as a bridge to lung transplantation in the United States: an evolving strategy in the management of rapidly advancing pulmonary disease. The Journal of Thoracic and Cardiovascular Surgery. 2015;149(1):291–6. This study presents a large-scale review of efficacy of ECMO used as a bridge to lung transplantation and provides evidence of the improved implementation of ECMO as a bridge therapy. PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Brodie D. The evolution of extracorporeal membrane oxygenation for adult respiratory failure. Ann Am Thorac Soc. 2018;15(Supplement_1):S57–60.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    • Biscotti M, Gannon WD, Agerstrand C, Abrams D, Sonett J, Brodie D, et al. Awake extracorporeal membrane oxygenation as bridge to lung transplantation: a 9-year experience. Ann Thorac Surg. 2017 [cited 2017 Apr 21]; Available from: This is a pivotal study demonstrating the clinical benefits of awake and ambulatory ECMO during bridge to transplantation.
  6. 6.
    Fuehner T, Kuehn C, Hadem J, Wiesner O, Gottlieb J, Tudorache I, et al. Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. American Journal of Respiratory and Critical Care Medicine. 2012 Apr;185(7):763–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Salam S, Kotloff R, Garcha P, Krishnan S, Joshi D, Grady P, et al. Lung transplantation after 125 days on ECMO for severe refractory hypoxemia with no prior lung disease. ASAIO Journal. 2017;63(5):e66–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Abrams D, Javidfar J, Farrand E, Mongero LB, Agerstrand CL, Ryan P, et al. Early mobilization of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Critical Care. 2014;18(1):R38.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    • Wu ZJ, Zhang T, Bianchi G, Wei X, Son H-S, Zhou K, et al. Thirty-day in-vivo performance of a wearable artificial pump-lung for ambulatory respiratory support. The Annals of Thoracic Surgery. 2012;93(1):274–81. This preclinical study was the first to demonstrate long-term (30-day) use of an integrated, wearable pump-lung without the need for multiple device exchanges. PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Zhou K, Niu S, Bianchi G, Wei X, Garimella N, Griffith BP, et al. Biocompatibility assessment of a long-term wearable artificial pump-lung in sheep: biocompatibility of long-term wearable artificial Lung. Artificial Organs. 2013;37(8):678–88.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Liu Y, Sanchez PG, Wei X, Watkins AC, Niu S, Wu ZJ, et al. Effects of cardiopulmonary support with a novel pediatric pump-lung in a 30-day ovine animal model: evaluation of a pediatric pump-lung. Artificial Organs. 2015;39(12):989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wei X, Sanchez PG, Liu Y, Claire Watkins A, Li T, Griffith BP, et al. Extracorporeal respiratory support with a miniature integrated pediatric pump-lung device in an acute ovine respiratory failure model: respiratory support with the PediPL. Artificial Organs. 2016;40(11):1046–53.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Madhani SP, Frankowski BJ, Federspiel WJ. Fiber bundle design for an integrated wearable artificial lung. ASAIO J. 2017;1.Google Scholar
  14. 14.
    Madhani SP, Frankowski BJ, Ye S-H, Burgreen GW, Wagner WR, Kormos R, et al. In vivo 5 day animal studies of a compact, wearable pumping artificial lung: ASAIO J. 2017;1.Google Scholar
  15. 15.
    Orizondo RA, May AG, Madhani SP, Frankowski BJ, Burgreen GW, Wearden PD, et al. In vitro characterization of the Pittsburgh Pediatric Ambulatory Lung. ASAIO J 2017;1.Google Scholar
  16. 16.
    May AG, Orizondo RA, Frankowski BJ, Wearden PD, Federspiel WJ. Acute in vivo evaluation of the Pittsburgh Pediatric Ambulatory Lung. ASAIO J 2018;1.Google Scholar
  17. 17.
    May AG, Jeffries RG, Frankowski BJ, Burgreen GW, Federspiel WJ. Bench validation of a compact low-flow CO2 removal device. Intensive Care Med Exp. 2018 [cited 2018 Oct 10];6(1). Available from:
  18. 18.
    Hoetzenecker K, Donahoe L, Yeung JC, Azad S, Fan E, Ferguson ND, et al. Extracorporeal life support as a bridge to lung transplantation–experience of a high-volume transplant center. The Journal of Thoracic and Cardiovascular Surgery. 2018;155(3):1316–1328.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shigemura N. Extracorporeal lung support for advanced lung failure: a new era in thoracic surgery and translational science. General Thoracic and Cardiovascular Surgery. 2018;66(3):130–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Schewe RE, Khanafer KM, Arab A, Mitchell JA, Skoog DJ, Cook KE. Design and in vitro assessment of an improved, low-resistance compliant thoracic artificial lung. ASAIO Journal. 2012;58(6):583–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Schewe RE, Khanafer KM, Orizondo RA, Cook KE. Thoracic artificial lung impedance studies using computational fluid dynamics and in vitro models. Annals of Biomedical Engineering. 2012;40(3):628–36.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sato H, Griffith GW, Hall CM, Toomasian JM, Hirschl RB, Bartlett RH, et al. Seven-day artificial lung testing in an in-parallel configuration. The Annals of Thoracic Surgery. 2007;84(3):988–94.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sato H, Hall CM, Lafayette NG, Pohlmann JR, Padiyar N, Toomasian JM, et al. Thirty-day in-parallel artificial lung testing in sheep. The Annals of Thoracic Surgery. 2007;84(4):1136–43.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Skoog DJ, Pohlmann JR, Demos DS, Scipione CN, Iyengar A, Schewe RE, et al. Fourteen day in vivo testing of a compliant thoracic artificial lung. ASAIO Journal. 2017;63(5):644–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Thompson AJ, Buchan S, Carr B, Poling C, Hayes M, Fernando UP, et al. Low-resistance, concentric-gated pediatric artificial lung for end-stage lung failure. ASAIO J. 2019;1.Google Scholar
  26. 26.
    Alghanem F, Bryner BS, Jahangir EM, Fernando UP, Trahanas JM, Hoffman HR, et al. Pediatric artificial lung: a low-resistance pumpless artificial lung alleviates an acute lamb model of increased right ventricle afterload. ASAIO J. 2017;63(2):223–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Svitek RG, Frankowski BJ, Federspiel WJ. Evaluation of a pumping assist lung that uses a rotating fiber bundle. ASAIO J. 2005;51(6):773–80.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tiruvoipati R, Buscher H, Winearls J, Breeding J, Ghosh D, Chaterjee S, et al. Early experience of a new extracorporeal carbon dioxide removal device for acute hypercapnic respiratory failure. Critical Care and Resuscitation. 2016;18(4):9.Google Scholar
  29. 29.
    Moss CE, Galtrey EJ, Camporota L, Meadows C, Gillon S, Ioannou N, et al. A retrospective observational case series of low-flow venovenous extracorporeal carbon dioxide removal use in patients with respiratory failure. ASAIO J. 2016;62(4):458–62.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Fanelli V, Ranieri MV, Mancebo J, Moerer O, Quintel M, Morley S, et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care. 2016 [cited 2016 Oct 20];20(1). Available from:
  31. 31.
    Hermann A, Riss K, Schellongowski P, Bojic A, Wohlfarth P, Robak O, et al. A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal. Intensive Care Medicine. 2015;41(10):1773–80.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hermann A, Staudinger T, Bojic A, Riss K, Wohlfarth P, Robak O, et al. First experience with a new miniaturized pump-driven venovenous extracorporeal CO2 removal system (iLA Activve): A Retrospective Data Analysis. ASAIO J. 2014;60(3):342–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Eloot S, Peperstraete H, De Somer F, Hoste E. Assessment of the optimal operating parameters during extracorporeal CO 2 removal with the Abylcap® system. The International Journal of Artificial Organs. 2016;39(11):580–5.CrossRefGoogle Scholar
  34. 34.
    Schmidt M, Jaber S, Zogheib E, Godet T, Capellier G, Combes A. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Critical Care. 2018 [cited 2019 Aug 19];22(1). Available from:
  35. 35.
    Grasselli G, Castagna L, Bottino N, Scaravilli V, Corcione N, Guzzardella A, et al. Practical clinical application of an extracorporeal carbon dioxide removal system in acute respiratory distress syndrome and acute on chronic respiratory failure. ASAIO J. 2019;1.Google Scholar
  36. 36.
    Philipp A, De Somer F, Foltan M, Bredthauer A, Krenkel L, Zeman F, et al. Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice. Erdoes G, editor. PLOS ONE. 2018;13(6):e0198392.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Naito N, Cook K, Toyoda Y, Shigemura N. Artificial lungs for lung failure. Journal of the American College of Cardiology. 2018;72(14):1640–52.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lai A, Demarest CT, Do-Nguyen CC, Ukita R, Skoog DJ, Carleton NM, et al. 72-Hour in vivo evaluation of nitric oxide generating artificial lung gas exchange fibers in sheep. Acta Biomater. 2019 [cited 2019 Apr 9]; Available from:
  39. 39.
    Amoako KA, Sundaram HS, Suhaib A, Jiang S, Cook KE. Multimodal, biomaterial-focused anticoagulation via superlow fouling zwitterionic functional groups coupled with anti-platelet nitric oxide release. Advanced Materials Interfaces. 2016;3(6):1500646.CrossRefGoogle Scholar
  40. 40.
    Amoako KA, Montoya PJ, Major TC, Suhaib AB, Handa H, Brant DO, et al. Fabrication and in vivo thrombogenicity testing of nitric oxide generating artificial lungs: no-releasing artificial lung. Journal of Biomedical Materials Research Part A. 2013;101(12):3511–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Malkin AD, Ye S-H, Lee EJ, Yang X, Zhu Y, Gamble LJ, et al. Development of zwitterionic sulfobetaine block copolymer conjugation strategies for reduced platelet deposition in respiratory assist devices. J Biomed Mater Res B Appl Biomater. 2018 [cited 2018 Feb 27]; Available from:
  42. 42.
    Sundaram HS, Han X, Nowinski AK, Brault ND, Li Y, Ella-Menye J-R, et al. Achieving one-step surface coating of highly hydrophilic poly (carboxybetaine methacrylate) polymers on hydrophobic and hydrophilic surfaces. Advanced Materials Interfaces. 2014;1(6):1400071.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ye S-H, Arazawa DT, Zhu Y, Shankarraman V, Malkin AD, Kimmel JD, et al. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs. Langmuir. 2015;31(8):2463–71.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ukita R, Wu K, Lin X, Carleton NM, Naito N, Lai A, et al. Zwitterionic poly-carboxybetaine coating reduces artificial lung thrombosis in sheep and rabbits. Acta Biomaterialia. 2019;92:71–81.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gbyli R, Mercaldi A, Sundaram H, Amoako KA. Achieving totally local anticoagulation on blood contacting devices. Advanced Materials Interfaces. 2017;4:1700954.Google Scholar
  46. 46.
    Conrad SA, Bagley A, Bagley B, Schaap RN. Major findings from the clinical trials of the intravascular oxygenator. Artificial Organs. 1994;18(11):846–63.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Conrad SA, Zwischenberger JB, Eggerstedt JM, Bidani A. In vivo gas transfer performance of the intravascular oxygenator in acute respiratory failure. Artificial Organs. 1994;18(11):840–5.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hattler BG, Lund LW, Golob J, Russian H, Lann MF, Merrill TL, et al. A respiratory gas exchange catheter: in vitro and in vivo tests in large animals. The Journal of Thoracic and Cardiovascular Surgery. 2002;124(3):520–30.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mihelc KM, Frankowski BJ, Lieber SC, Moore ND, Hattler BG, Federspiel WJ. Evaluation of a respiratory assist catheter that uses an impeller within a hollow fiber membrane bundle. ASAIO Journal. 2009;55(6):569–74.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Schumer E, Höffler K, Kuehn C, Slaughter M, Haverich A, Wiegmann B. In-vitro evaluation of limitations and possibilities for the future use of intracorporeal gas exchangers placed in the upper lobe position. Journal of Artificial Organs. 2018;21(1):68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    • Kovach KM, LaBarbera MA, Moyer MC, Cmolik BL, van Lunteren E, Sen Gupta A, et al. In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microfluidic artificial lung. Lab on a Chip. 2015;15(5):1366–75. This article discusses the first application of thromboresistant coatings within a microchannel-based artificial lung. Additionally, it is one of the only existing publications documenting in vivo (short-term) evaluation of such a device. PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Thompson AJ, Ma LJ, Plegue TJ, Potkay JA. Design analysis and optimization of a single-layer PDMS microfluidic artificial lung. IEEE Transactions on Biomedical Engineering. 2019;66(4):1082–93.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Matharoo H, Dabaghi M, Rochow N, Fusch G, Saraei N, Tauhiduzzaman M, et al. Steel reinforced composite silicone membranes and its integration to microfluidic oxygenators for high performance gas exchange. Biomicrofluidics. 2018;12(1):014107.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rieper T, Müller C, Reinecke H. Novel scalable and monolithically integrated extracorporeal gas exchange device. Biomed Microdevices. 2015 [cited 2019 Aug 16];17(5). Available from:
  55. 55.
    Burgess KA, Hu H-H, Wagner WR, Federspiel WJ. Towards microfabricated biohybrid artificial lung modules for chronic respiratory support. Biomedical Microdevices. 2009;11(1):117–27.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Gimbel AA, Flores E, Koo A, García-Cardeña G, Borenstein JT. Development of a biomimetic microfluidic oxygen transfer device. Lab Chip. 2016;16(17):3227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. 2007;318:5.Google Scholar
  60. 60.
    Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, et al. Dual SMAD Signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell. 2016;19(2):217–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Weymann A, Patil NP, Sabashnikov A, Korkmaz S, Li S, Soos P, et al. Perfusion-decellularization of porcine lung and trachea for respiratory bioengineering: bioartificial lungs and tracheae. Artificial Organs. 2015;39(12):1024–32.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Song JJ, Kim SS, Liu Z, Madsen JC, Mathisen DJ, Vacanti JP, et al. Enhanced in vivo function of bioartificial lungs in rats. The Annals of Thoracic Surgery. 2011;92(3):998–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Douglas WHJ, Moorman GW, Teel RW. The formation of histotypic structures from monodisperse fetal rat lung cells cultured on a three-dimensional substrate. In Vitro. 1976;12(5):373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lwebuga-Mukasa JS, Ingbar DH, Madri JA. Repopulation of a human alveolar matrix by adult rat type II pneumocytes in vitro. Experimental Cell Research. 1986;162(2):423–35.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    • Comber EM, Palchesko RN, Ng WH, Ren X, Cook KE. De novo lung biofabrication: clinical need, construction methods, and design strategy. Transl Res. 2019 [cited 2019 Jun 25]; Available from: This comprehensive reviews discusses the challenges that would need to be addressed in order to achieve a de novo bioartificial lung as well as potential pathways to solutions.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ryan A. Orizondo
    • 1
    • 2
    • 3
  • Arturo J. Cardounel
    • 4
  • Robert Kormos
    • 1
    • 3
    • 4
  • Pablo G. Sanchez
    • 4
    Email author
  1. 1.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Department of MedicineUniversity of PittsburghPittsburghUSA
  3. 3.Department of BioengineeringUniversity of Pittsburgh Medical CenterPittsburghUSA
  4. 4.Department of Cardiothoracic Surgery, Division of Thoracic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations