Machine Perfusion of Donor Heart: State of the Art

  • Sanaz Hatami
  • Darren H. FreedEmail author
Machine Preservation of the Liver (C Miller and C Quintini, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Machine Preservation of the Liver


Purpose of Review

The purpose of this manuscript is to briefly review the past, present, and potential future of machine perfusion (MP) of the donor heart and to highlight its potentials to improve heart transplantation rates and outcomes.

Recent Findings

During the last few decades, the interests in MP has been raised. Experimental studies in animal and human models, together with clinical trials have provided robust evidence that MP may be considered as a better organ preservation method compared to conventional cold storage, as it avoids cold ischemia and maintains aerobic metabolism requirements of the donor heart. Evidence suggest that the dynamic platform in MP may offer an avenue to deliver reconditioning therapies during the preservation time.


MP can preserve the donated heart in a beating, semi-physiologic dynamic status. It allows functional and metabolic evaluation, and reconditioning of dysfunctional donated hearts, and therefore may hold promise to expand the donor pool.

Key words

Heart transplantation Organ preservation Machine perfusion Metabolic assessment Functional assessment 


Compliance with Ethical Standards

Conflict of Interest

Darren Freed holds patents on machine organ perfusion technology and methods. DHF is a founder and major shareholder of Tevosol, Inc.

Sanaz Hatami declares no conflict of interest.

Human and Animal Rights and Informed Consent

The studies conducted by our group and mentioned here, have been approved by the institutional animal care committee of the University of Alberta, Edmonton, AB, Canada.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie. 2011;38(2):125–42.Google Scholar
  2. 2.
    Monteagudo Vela M, Garcia Saez D, Simon AR. Current approaches in retrieval and heart preservation. Ann Cardiothorac Surg. 2018;7(1):67–74.Google Scholar
  3. 3.
    Choong JW, Ou R, Lim YW, Rosenfeldt FL. Cold crystalloid perfusion provides cardiac preservation superior to cold storage for donation after circulatory death. Transplantation. 2016;100(3):546–53.Google Scholar
  4. 4.
    Collins MJ, Moainie SL, Griffith BP, Poston RS. Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool. Eur J Cardiothorac Surg. 2008;34(2):318–25.Google Scholar
  5. 5.
    Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol. 2012;303(2):H156–67.Google Scholar
  6. 6.
    Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J. 1967;41(48):1271–4.Google Scholar
  7. 7.
    Rivard AL, Gallegos R, Ogden IM, Bianco RW. Perfusion preservation of the donor heart: basic science to pre-clinical. J Extra Corpor Technol. 2009;41(3):140–8.Google Scholar
  8. 8.
    Wicomb WN, Cooper DK, Novitzky D, Barnard CN. Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann Thorac Surg. 1984;37(3):243–8.Google Scholar
  9. 9.
    Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg. 2015;20(4):510–9.Google Scholar
  10. 10.
    Dhital KK, Chew HC, Macdonald PS. Donation after circulatory death heart transplantation. Curr Opin Organ Transplant. 2017;22(3):189–97.Google Scholar
  11. 11.
    • White CW, Ambrose E, Muller A, Li Y, Le H, Hiebert B, et al. Assessment of donor heart viability during ex vivo heart perfusion. Can J Physiol Pharmacol. 2015;93(10):893–901. Provides very useful information about correlation of metabolic and function assessment parameters with quality of the graft.Google Scholar
  12. 12.
    White CW, Messer SJ, Large SR, Conway J, Kim DH, Kutsogiannis DJ, et al. Transplantation of hearts donated after circulatory death. Front Cardiovasc Med. 2018;5:8.Google Scholar
  13. 13.
    Messer S, Ardehali A, Tsui S. Normothermic donor heart perfusion: current clinical experience and the future. Transpl Int. 2015;28(6):634–42.Google Scholar
  14. 14.
    Latchana N, Peck JR, Whitson B, Black SM. Preservation solutions for cardiac and pulmonary donor grafts: a review of the current literature. J Thorac Dis. 2014;6(8):1143–9.Google Scholar
  15. 15.
    Ardehali A, Esmailian F, Deng M, Soltesz E, Hsich E, Naka Y, et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet (London, England). 2015;385(9987):2577–84.Google Scholar
  16. 16.
    Hatami S, White CW, Ondrus M, Qi X, Buchko M, Himmat S, et al. Normothermic Ex Situ Heart Perfusion in Working Mode: Assessment of Cardiac Function and Metabolism. J Vis Exp : JoVE 2019(143).Google Scholar
  17. 17.
    Taylor MJ, Baicu SC. Current state of hypothermic machine perfusion preservation of organs: The clinical perspective. Cryobiology. 2010;60(3 Suppl):S20–35.Google Scholar
  18. 18.
    Ozeki T, Kwon MH, Gu J, Collins MJ, Brassil JM, Miller MB Jr, et al. Heart preservation using continuous ex vivo perfusion improves viability and functional recovery. Circ J. 2007;71(1):153–9.Google Scholar
  19. 19.
    Rosenbaum DH, Peltz M, DiMaio JM, Meyer DM, Wait MA, Merritt ME, et al. Perfusion preservation versus static preservation for cardiac transplantation: effects on myocardial function and metabolism. J Heart Lung Transplant. 2008;27(1):93–9.Google Scholar
  20. 20.
    Steen S, Paskevicius A, Liao Q, Sjoberg T. Safe orthotopic transplantation of hearts harvested 24 hours after brain death and preserved for 24 hours. Scand Cardiovasc J. 2016;50(3):193–200.Google Scholar
  21. 21.
    Michel SG, La Muraglia GM 2nd, Madariaga ML, Titus JS, Selig MK, Farkash EA, et al. Preservation of donor hearts using hypothermic oxygenated perfusion. Ann Transplant. 2014;19:409–16.Google Scholar
  22. 22.
    Fitton TP, Barreiro CJ, Bonde PN, Wei C, Gage F, Rodriguez R, et al. Attenuation of DNA damage in canine hearts preserved by continuous hypothermic perfusion. Ann Thorac Surg. 2005;80(5):1812–20.Google Scholar
  23. 23.
    Rosenfeldt F, Ou R, Woodard J, Esmore D, Marasco S. Twelve-hour reanimation of a human heart following donation after circulatory death. Heart Lung Circ. 2014;23(1):88–90.Google Scholar
  24. 24.
    Van Caenegem O, Beauloye C, Bertrand L, Horman S, Lepropre S, Sparavier G, et al. Hypothermic continuous machine perfusion enables preservation of energy charge and functional recovery of heart grafts in an ex vivo model of donation following circulatory death. Eur J Cardiothorac Surg. 2016;49(5):1348–53.Google Scholar
  25. 25.
    Van Raemdonck D, Rega F, Rex S, Neyrinck A. Machine perfusion of thoracic organs. J Thorac Dis. 2018;10(Suppl 8):S910–s23.Google Scholar
  26. 26.
    • Hatami S, White C, Shan S, Haromy A, Qi X, Ondrus M, et al. Myocardial functional decline during prolonged ex situ heart perfusion. Ann Thorac Surg. 2019;In Press. This study provides evidence about the beneficial roles of normothermic machine perfusion in working mode for functional assessment, and also for better preservation of function and viability.Google Scholar
  27. 27.
    Garbade J, Krautz C, Aupperle H, Ullmann C, Lehmann S, Kempfert J, et al. Functional, metabolic, and morphological aspects of continuous, normothermic heart preservation: effects of different preparation and perfusion techniques. Tissue Eng Part C Methods. 2009;15(2):275–83.Google Scholar
  28. 28.
    Garcia Saez D, Zych B, Sabashnikov A, Bowles CT, De Robertis F, Mohite PN, et al. Evaluation of the organ care system in heart transplantation with an adverse donor/recipient profile. Ann Thorac Surg. 2014;98(6):2099–105 discussion 105-6.Google Scholar
  29. 29.
    Iyer A, Gao L, Doyle A, Rao P, Cropper JR, Soto C, et al. Normothermic ex vivo perfusion provides superior organ preservation and enables viability assessment of hearts from DCD donors. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(2):371–80.Google Scholar
  30. 30.
    White CW, Hasanally D, Mundt P, Li Y, Klein J, Xiang B, et al. A wholeblood–based perfusate provides superior preservation of myocardial function during ex vivo heart perfusion. J Heart Lung Transplant. 2014;S1053-2498(14):01356–4.Google Scholar
  31. 31.
    Brant SM, Cobert ML, West LM, Shelton JM, Jessen ME, Peltz M. Characterizing cardiac donation after circulatory death: implications for perfusion preservation. Ann Thorac Surg. 2014;98(6):2107–13 discussion 13-4.Google Scholar
  32. 32.
    Rosenfeldt F, Ou R, Salamonsen R, Marasco S, Zimmet A, Byrne J, et al. A novel combination technique of cold crystalloid perfusion but not cold storage facilitates transplantation of canine hearts donated after circulatory death. J Heart Lung Transplant. 2016;35(11):1358–64.Google Scholar
  33. 33.
    Schraufnagel DP, Steffen RJ, Vargo PR, Attia T, Elgharably H, Hasan SM, et al. Devices for ex vivo heart and lung perfusion. Expert Rev Med Devices. 2018;15(3):183–91.Google Scholar
  34. 34.
    Lucchinetti E, Lou PH, Hatami S, Qi X, Clanachan AS, Freed DH, et al. Enhanced myocardial protection in cardiac donation after circulatory death using Intralipid((R)) postconditioning in a porcine model. Can J Anaesth. 2019.Google Scholar
  35. 35.
    White C, Ambrose E, Muller A, Hatami S, Li Y, Le H, et al. Impact of reperfusion calcium and pH on the resuscitation of hearts donated after circulatory death. Ann Thorac Surg. 2017;103(1):122–30.Google Scholar
  36. 36.
    • Iyer A, Gao L, Doyle A, Rao P, Jayewardene D, Wan B, et al. Increasing the tolerance of DCD hearts to warm ischemia by pharmacological postconditioning. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14(8):1744–52. This study provides valuable evidence for possibility of acceptable recovery of DCD hearts using problem-based cardioprotective interventions.Google Scholar
  37. 37.
    Page A, Messer S, Large SR. Heart transplantation from donation after circulatory determined death. Ann Cardiothorac Surg. 2018;7(1):75–81.Google Scholar
  38. 38.
    Michel SG, La Muraglia GM 2nd, Madariaga ML, Titus JS, Selig MK, Farkash EA, et al. Twelve-hour hypothermic machine perfusion for donor heart preservation leads to improved ultrastructural characteristics compared to conventional cold storage. Ann Transplant. 2015;20:461–8.Google Scholar
  39. 39.
    Tolboom H, Olejnickova V, Reser D, Rosser B, Wilhelm MJ, Gassmann M, et al. Moderate hypothermia during ex vivo machine perfusion promotes recovery of hearts donated after cardiocirculatory deathdagger. Eur J Cardiothorac Surg. 2016;49(1):25–31.Google Scholar
  40. 40.
    Bishawi M, Roan J-N, Milano CA, Daneshmand MA, Schroder JN, Chiang Y, et al. A normothermic ex vivo organ perfusion delivery method for cardiac transplantation gene therapy. Sci Rep. 2019;9(1):8029.Google Scholar
  41. 41.
    Church JT, Alghanem F, Deatrick KB, Trahanas JM, Phillips JP, Hee Song M, et al. Normothermic ex vivo heart perfusion: effects of live animal blood and plasma cross circulation. ASAIO J. 2017;63(6):766–73.Google Scholar
  42. 42.
    Trahanas JM, Witer LJ, Alghanem F, Bryner BS, Iyengar A, Hirschl JR, et al. Achieving 12 hour normothermic ex situ heart perfusion: an experience of 40 porcine hearts. ASAIO J. 2016;62(4):470–6.Google Scholar
  43. 43.
    • Messer S, Page A, Axell R, Berman M, Hernandez-Sanchez J, Colah S, et al. Outcome after heart transplantation from donation after circulatory-determined death donors. J. Heart Lung Transplant. 2017;36(12):1311–8. This study provides robust clinical evidence for successful resuscitation of DCD hearts using different machine perfusion approaches.Google Scholar
  44. 44.
    Taylor MJ. Hypothermic blood substitution: special considerations for protection of cells during ex vivo and in vivo preservation. Transfus Med Hemother. 2007;34:226–44.Google Scholar
  45. 45.
    Giannelli S Jr, McKenna JP, Bordiuk JM, Miller LD, Jerome CR. Prevention of increased hemoglobin-oxygen affinity in open-heart operations with inosine-phosphate-pyruvate solution. Ann Thorac Surg. 1976;21(5):386–96.Google Scholar
  46. 46.
    Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol. 2008;40(4):257–67.Google Scholar
  47. 47.
    Schroder JN, D’Alessandro D, Esmailian F, Boeve T, Tang P, Liao K, et al. Successful utilization of extended criteria donor (ECD) Hearts for Transplantation - results of the OCS™ Heart EXPAND Trial to evaluate the effectiveness and safety of the OCS heart system to preserve and assess ECD hearts for transplantation. J Heart Lung Transplant. 2019;38(4):S42.Google Scholar
  48. 48.
    Dhital KK, Iyer A, Connellan M, Chew HC, Gao L, Doyle A, et al. Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: a case series. Lancet (London, England). 2015;385(9987):2585–91.Google Scholar
  49. 49.
    Hamed A, Tsui S, Huber J, Lin R, . Poggio E, Ardehali A. Serum lactate is a highly sensitive and specific predictor of post cardiac transplant outcomes using the organ care system. J Heart Lung Transplant. 2009;28(2):S71.Google Scholar
  50. 50.
    Stamp NL, Shah A, Vincent V, Wright B, Wood C, Pavey W, et al. Successful heart transplant after ten hours out-of-body time using the TransMedics Organ Care System. Heart Lung Circ. 2015;24(6):611–3.Google Scholar
  51. 51.
    Page A, Messer S, Axell R, Naruka V, Colah S, Fakelman S, et al. Does the assessment of DCD donor hearts on the organ care system using lactate need redefining? Heart Lung Transplant. 2017;36(4):S16–S7.Google Scholar
  52. 52.
    Freed DH, White CW. Donor heart preservation: straight up, or on the rocks? Lancet (London, England). 2015;385(9987):2552–4.Google Scholar
  53. 53.
    National Institude for Health and Care Excellence. London: 2016.Google Scholar
  54. 54.
    Sandha JK, White CW, Muller A, Avery E, Thliveris J, Dixon IMC, et al. Steroids limit myocardial edema during ex vivo perfusion of hearts donated after circulatory death. Ann Thorac Surg. 2018;105(6):1763–70.Google Scholar
  55. 55.
    Ferdinandy P, Panas D, Schulz R. Peroxynitrite contributes to spontaneous loss of cardiac efficiency in isolated working rat hearts. Am J Phys. 1999;276(6):H1861–7.Google Scholar
  56. 56.
    White CW, Ali A, Hasanally D, Xiang B, Li Y, Mundt P, et al. A cardioprotective preservation strategy employing ex vivo heart perfusion facilitates successful transplant of donor hearts after cardiocirculatory death. J Heart Lung Transplant. 2013;32(7):734–43.Google Scholar
  57. 57.
    Cobert ML, Peltz M, West LM, Merritt ME, Jessen ME. Glucose is an ineffective substrate for preservation of machine perfused donor hearts. J Surg Res. 2012;173(2):198–205.Google Scholar
  58. 58.
    Jahania MS, Sanchez JA, Narayan P, Lasley RD, Mentzer RM Jr. Heart preservation for transplantation: principles and strategies. Ann Thorac Surg. 1999;68(5):1983–7.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of AlbertaEdmontonCanada
  2. 2.Canadian Transplant Research ProgramEdmontonCanada
  3. 3.Department of PhysiologyUniversity of AlbertaEdmontonCanada
  4. 4.Department of Biomedical EngineeringUniversity of AlbertaEdmontonCanada
  5. 5.Alberta Transplant InstituteEdmontonCanada

Personalised recommendations