Current Epidemiology Reports

, Volume 5, Issue 3, pp 303–315 | Cite as


  • William DavisEmail author
  • Rupa Narra
  • Eric D. Mintz
Infectious Disease Epidemiology (A Reingold, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Infectious Disease Epidemiology


Purpose of Review

This review describes the basic epidemiologic, clinical, and microbiologic aspects of cholera, highlights new developments within these areas, and presents strategies for applying currently available tools and knowledge more effectively.

Recent Findings

From 1990 to 2016, the reported global burden of cholera fluctuated between 74,000 and 595,000 cases per year; however, modeling estimates suggest the real burden is between 1.3 and 4.0 million cases and 95,000 deaths yearly. In 2018, the World Health Assembly endorsed a new initiative to reduce cholera deaths by 90% and eliminate local cholera transmission in 20 countries by 2030. New tools, including localized GIS mapping, climate modeling, whole genome sequencing, oral vaccines, rapid diagnostic tests, and new applications of water, sanitation, and hygiene interventions, could support this goal. Challenges include a high proportion of fragile states among cholera-endemic countries, urbanization, climate change, and the need for cholera treatment guidelines for pregnant women and malnourished children.


Reducing cholera morbidity and mortality depends on real-time surveillance, outbreak detection and response; timely access to appropriate case management and cholera vaccines; and provision of safe water, sanitation, and hygiene.


Cholera Vibrio cholerae Epidemiology 



We gratefully acknowledge the assistance of Maryann Turnsek and Amy Lang in preparing this manuscript.

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lacey SW. Cholera: Calamitous past, ominous future. Clin Infect Dis. 1995;20(5):1409–19.PubMedCrossRefGoogle Scholar
  2. 2.
    • Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis. 2015;9(6):e0003832. Updated estimates of the number of cholera cases and deaths actually occurring in endemic countries, which are much larger than the numbers reported through global surveillance. PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    •• WHO. Ending Cholera A Global Roadmap to 2030. WHO [Internet]. WHO; 2018 [cited 2018 May 23]. Available from: Initiative launched by the Global Task Force on Cholera Control in 2017 and approved by the World Health Assembly in 2018, outlines a strategy to reduce the number of global cholera deaths by 90% and eliminate cholera transmission in 20 countries by 2030.
  4. 4.
    Barzilay EJ, Schaad N, Magloire R, Mung KS, Boncy J, Dahourou GA, et al. Cholera surveillance during the Haiti epidemic—the first 2 years. N Engl J Med. 2013;368(7):599–609.PubMedCrossRefGoogle Scholar
  5. 5.
    WHO. Glob Health Observatory data repository: cholera [Internet]. 2017. Available from:
  6. 6.
    • Camacho A, Bouhenia M, Alyusfi R, Alkohlani A, Naji MAM, de Radiguès X, et al. Cholera epidemic in Yemen, 2016–18: an analysis of surveillance data. Lancet Glob Health. 2018;6(6):e680–90. Describes a cholera outbreak in war-torn Yemen in which over 1 million cases were reported during a 2-year period. PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bartels SA, Greenough PG, Tamar M, VanRooyen MJ. Investigation of a cholera outbreak in Ethiopia’s Oromiya region. Disaster Med Public Health Prep. 2010;4(4):312–7.PubMedCrossRefGoogle Scholar
  8. 8.
    WHO. AFRO Outbreaks and Emergencies Bulletin 30 May, 2016 [Internet]. 2016. Available from:
  9. 9.
    Paul RC, Faruque ASG, Alam M, Iqbal A, Zaman K, Islam N, et al. Incidence of severe diarrhoea due to Vibrio cholerae in the catchment area of six surveillance hospitals in Bangladesh. Epidemiol Infect. 2016;144(5):927–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Shikanga O-T, Mutonga D, Abade M, Amwayi S, Ope M, Limo H, et al. High mortality in a cholera outbreak in western Kenya after post-election violence in 2008. Am J Trop Med Hyg. 2009;81(6):1085–90.PubMedCrossRefGoogle Scholar
  11. 11.
    McCrickard LS, Massay AE, Narra R, Mghamba J, Mohamed AA, Kishimba RS, et al. Cholera mortality during urban epidemic, Dar es Salaam, Tanzania, August 16, 2015–January 16, 20161. Emerg Infect Dis [Internet]. 2017 Dec [cited 2018 May 31];23(13). Available from:
  12. 12.
    WHO. WHO | World Health Statistics 2014 [Internet]. WHO. 2015 [cited 2018 May 24]. Available from:
  13. 13.
    Ali M, Lopez AL, Ae You Y, Eun Kim Y, Sah B, Maskery B, et al. The global burden of cholera. Bull World Health Organ. 2012;90(3):209–18.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    GBD. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Lond Engl. 2016;388(10053):1459–544.CrossRefGoogle Scholar
  15. 15.
    GBD. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Lond Engl. 2017;390(10100):1084–150.CrossRefGoogle Scholar
  16. 16.
    WHO. Cholera, 2016. Wkly Epidemiol Rec. 2017;92(36):521–36.Google Scholar
  17. 17.
    WHO. Meeting of the strategic advisory Group of Experts on immunization, April 2017—conclusions and recommendations. Wkly Epidemiol Rec. 2017;92(22):301–20.Google Scholar
  18. 18.
    WHO. Cholera, 2015. Wkly Epidemiol Rec. 2016;91(38):432–40.Google Scholar
  19. 19.
    Estrada-García T, Mintz ED. Cholera: foodborne transmission and its prevention. Eur J Epidemiol. 1996;12(5):461–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Wolfe M, Kaur M, Yates T, Woodlin M, Lantagne D. A systematic review and meta-analysis of the association between water, sanitation, and hygiene exposures and cholera in case-control studies Am J Trop Med Hyg. 2018;in press.Google Scholar
  21. 21.
    Sugimoto JD, Koepke AA, Kenah EE, Halloran ME, Chowdhury F, Khan AI, et al. Household transmission of Vibrio cholerae in Bangladesh. PLoS Negl Trop Dis. 2014;8(11):e3314.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Burrowes V, Perin J, Monira S, Sack DA, Rashid M-U, Mahamud T, et al. Risk factors for household transmission of Vibrio cholerae in Dhaka, Bangladesh (CHoBI7 trial). Am J Trop Med Hyg. 2017;96(6):1382–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Weil AA, Khan AI, Chowdhury F, Larocque RC, Faruque ASG, Ryan ET, et al. Clinical outcomes in household contacts of patients with cholera in Bangladesh. Clin Infect Dis Off Publ Infect Dis Soc Am. 2009;49(10):1473–9.CrossRefGoogle Scholar
  24. 24.
    Debes AK, Ali M, Azman AS, Yunus M, Sack DA. Cholera cases cluster in time and space in Matlab, Bangladesh: implications for targeted preventive interventions. Int J Epidemiol. 2016;45(6):2134–9.PubMedGoogle Scholar
  25. 25.
    Jackson BR, Talkington DF, Pruckler JM, Fouche MDB, Lafosse E, Nygren B, et al. Seroepidemiologic survey of epidemic cholera in Haiti to assess spectrum of illness and risk factors for severe disease. Am J Trop Med Hyg. 2013;89(4):654–64.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Watson AP, Armstrong AQ, White GH, Thran BH. Health-based ingestion exposure guidelines for Vibrio cholerae: technical basis for water reuse applications. Sci Total Environ. 2018;613–614:379–87.PubMedCrossRefGoogle Scholar
  27. 27.
    Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet. 2017;390(10101):1539–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Gunnlaugsson G, Angulo FJ, Einarsdottir J, Passa A, Tauxe RV. Epidemic cholera in Guinea-Bissau: the challenge of preventing deaths in rural West Africa. Int J Infect Dis. 2000;4(1):8–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Tauxe RV, Holmberg SD, Dodin A, Wells JV, Blake PA. Epidemic cholera in Mali: high mortality and multiple routes of transmission in a famine area. Epidemiol Infect. 1988;100(2):279–89.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Quick RE, Vargas R, Moreno D, Mujica O, Beingolea L, Palacios AM, et al. Epidemic cholera in the Amazon: the challenge of preventing death. Am J Trop Med Hyg. 1993;48(5):597–602.PubMedCrossRefGoogle Scholar
  31. 31.
    Routh JA, Loharikar A, Fouche M-DB, Cartwright EJ, Roy SL, Ailes E, et al. Rapid assessment of cholera-related deaths, Artibonite department, Haiti, 2010. Emerg Infect Dis. 2011;17(11):2139–42.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Morof D, Cookson ST, Laver S, Chirundu D, Desai S, Mathenge P, et al. Community mortality from cholera: urban and rural districts in Zimbabwe. Am J Trop Med Hyg. 2013;88(4):645–50.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gutiérrez G, Tapia-Conyer R, Guiscafré H, Reyes H, Martinez H, Kumate J. Impact of oral rehydration and selected public health interventions on reduction of mortality from childhood diarrhoeal diseases in Mexico. Bull World Health Organ. 1996;74(2):189.PubMedPubMedCentralGoogle Scholar
  34. 34.
    McAteer JB, Danda S, Nhende T, Manamike P, Parayiwa T, Tarupihwa A, et al. Notes from the field: outbreak of Vibrio cholerae associated with attending a funeral - Chegutu District, Zimbabwe, 2018. MMWR Morb Mortal Wkly Rep. 2018;67(19):560–1.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McKay HS, Lessler J, Moore SM, Azman AS. What is a hotspot anyway? Am J Trop Med Hyg. 2017;96(6):1270–3.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    • Lessler J, Moore SM, Luquero FJ, McKay HS, Grais R, Henkens M, et al. Mapping the burden of cholera in sub-Saharan Africa and implications for control: an analysis of data across geographical scales. Lancet Lond Engl. 2018;391(10133):1908–15. Introduction to the different kinds of hotspots with implications for how these may relate to implementation of the Ending Cholera initiative. CrossRefGoogle Scholar
  37. 37.
    • Moore SM, Azman AS, Zaitchik BF, Mintz ED, Brunkard J, Legros D, et al. El Niño and the shifting geography of cholera in Africa. Proc Natl Acad Sci. 2017;114(17):4436–41. Analytic study of the effects of a particular meteorological phenomenon on cholera incidence in sub-Saharan Africa. PubMedCrossRefGoogle Scholar
  38. 38.
    • Finger F, Genolet T, Mari L, de Magny GC, Manga NM, Rinaldo A, et al. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Proc Natl Acad Sci. 2016;113(23):6421–6. Example of the use of mobile phone data to gain insights on cholera epidemiology and patterns of disease spread. PubMedCrossRefGoogle Scholar
  39. 39.
    Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E, Sallah K, et al. Using mobile phone data to predict the spatial spread of cholera. Sci Rep [Internet]. 2015 Aug [cited 2018 May 7];5(1). Available from:
  40. 40.
    Mintz ED, Tauxe RV. Cholera in Africa: a closer look and a time for action. J Infect Dis. 2013;208(Suppl 1):S4–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Colwell RR. Global climate and infectious disease: the cholera paradigm. Science. 1996;274(5295):2025–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Huq A, West PA, Small EB, Huq MI, Colwell RR. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microbiol. 1984;48(2):420–4.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kaneko T, Colwell RR. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J Bacteriol. 1973;113(1):24–32.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Oliver JD, Warner RA, Cleland DR. Distribution of Vibrio vulnificus and other lactose-fermenting vibrios in the marine environment. Appl Environ Microbiol. 1983;45(3):985–98.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Jutla A, Aldaach H, Billian H, Akanda A, Huq A, Colwell R. Satellite based assessment of hydroclimatic conditions related to cholera in Zimbabwe. Schumann GJ-P, editor. PLoS One. 2015;10(9):e0137828.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chretien J-P, Anyamba A, Small J, Britch S, Sanchez JL, Halbach AC, et al. Global climate anomalies and potential infectious disease risks: 2014-2015. PLoS Curr 2015;26(7).Google Scholar
  47. 47.
    Cash BA, Rodó X, Emch M, Yunus M, Faruque ASG, Pascual M. Cholera and shigellosis: different epidemiology but similar responses to climate variability. PLoS One. 2014;9(9):e107223.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Martinez PP, Reiner RC, Cash BA, Rodó X, Shahjahan Mondal M, Roy M, et al. Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Niño: lessons learned. PLoS One. 2017;12(3):e0172355.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ramírez IJ, Grady SC, Niño E. Climate, and cholera associations in Piura, Peru, 1991–2001: a wavelet analysis. EcoHealth. 2016;13(1):83–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Munyuli MT, Kavuvu JM, Mulinganya G, Bwinja GM. The potential financial costs of climate change on health of urban and rural citizens: a case study of Vibrio cholerae infections at Bukavu town, south Kivu Province, eastern Democratic Republic of Congo. Iran J Public Health. 2013;42(7):707.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Leckebusch GC, Abdussalam AF. Climate and socioeconomic influences on interannual variability of cholera in Nigeria. Health Place. 2015;34:107–17.PubMedCrossRefGoogle Scholar
  52. 52.
    Stoltzfus JD, Carter JY, Akpinar-Elci M, Matu M, Kimotho V, Giganti MJ, et al. Interaction between climatic, environmental, and demographic factors on cholera outbreaks in Kenya. Infect Dis Poverty. 2014;3(1):37.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Rebaudet S, Sudre B, Faucher B, Piarroux R. Environmental determinants of cholera outbreaks in inland Africa: a systematic review of main transmission foci and propagation routes. J Infect Dis. 2013;208(suppl_1):S46–54.PubMedCrossRefGoogle Scholar
  54. 54.
    Constantin de Magny G, Thiaw W, Kumar V, Manga NM, Diop BM, Gueye L, et al. Cholera outbreak in Senegal in 2005: was climate a factor? PLoS One. 2012;7(8):e44577.PubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ruiz-Moreno D, Pascual M, Bouma M, Dobson A, Cash B. Cholera seasonality in madras (1901–1940): dual role for rainfall in endemic and epidemic regions. EcoHealth. 2007;4:52–62.CrossRefGoogle Scholar
  56. 56.
    Hashizume M, Faruque ASG, Wagatsuma Y, Hayashi T, Armstrong B. Cholera in Bangladesh: climatic components of seasonal variation. Epidemiology. 2010;21(5):706–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Rieckmann A, Tamason CC, Gurley ES, Rod NH, Jensen PKM. Exploring droughts and floods and their association with cholera outbreaks in sub-Saharan Africa: a register-based ecological study from 1990 to 2010. Am J Trop Med Hyg. 2018;98(5):1269–74.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ezeh A, Oyebode O, Satterthwaite D, Chen Y-F, Ndugwa R, Sartori J, et al. The history, geography, and sociology of slums and the health problems of people who live in slums. Lancet. 2017;389(10068):547–58.PubMedCrossRefGoogle Scholar
  59. 59.
    UNPOP. World Urbanization Prospects - Population Division - United Nations [Internet]. 2017 [cited 2018 May 24]. Available from:
  60. 60.
    Moore S, Dongdem AZ, Opare D, Cottavoz P, Fookes M, Sadji AY, et al. Dynamics of cholera epidemics from Benin to Mauritania. Fuehrer H-P, editor. PLoS Negl Trop Dis 2018;12(4):e0006379.Google Scholar
  61. 61.
    JMP. JMP [Internet]. 2018 [cited 2018 May 24]. Available from:
  62. 62.
    Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet. 2004;363(9404):223–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Snow J. Mode of communication of cholera. Wilson and Oglivy, London; 1855.Google Scholar
  64. 64.
    Johnson S. The ghost map: the story of London’s most terrifying epidemic—and how it changed science, cities, and the modern world. Riverhead Books, New York; 2007.Google Scholar
  65. 65.
    Ali M, Gupta SS, Arora N, Khasnobis P, Venkatesh S, Sur D, et al. Identification of burden hotspots and risk factors for cholera in India: an observational study. PLoS One. 2017;12(8):e0183100.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Almosawa S, Hubbard B, Griggs T. It’s a slow death: the World’s worst humanitarian crisis The New York Times [Internet]. 2017 Aug 23 [cited 2018 May 24]; Available from:,
  67. 67.
    Bruckner C, Checchi F. Detection of infectious disease outbreaks in twenty-two fragile states, 2000-2010: a systematic review. Confl Health. 2011;5(1):13.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Beyrer C, Villar JC, Suwanvanichkij V, Singh S, Baral SD, Mills EJ. Neglected diseases, civil conflicts, and the right to health. Lancet. 2007;370(9587):619–27.PubMedCrossRefGoogle Scholar
  69. 69.
    World Bank. Harmonized List of Fragile Situations [Internet]. World Bank. 2018 [cited 2018 May 24]. Available from:
  70. 70.
    JMP. Progress on drinking water, sanitation and hygiene [Internet]. UNICEF, WHO Joint Monitoring Project; 2017. Available from:
  71. 71.
    GTFCC. Personal email communication. WHO/GTFCC; 2018.Google Scholar
  72. 72.
    • CDC. Laboratory Testing for Cholera | Cholera | CDC [Internet]. 2018 [cited 2018 May 24]. Available from: Guidance on isolation and identification of Vibrio cholerae O1 in specimens from suspected cases.
  73. 73.
    WHO. Bacterial agents of enteric diseases of public health concern: Salmonella serotype Typhi, Shigella, Vibrio cholerae [Internet]. 2003. Available from:
  74. 74.
    CDC. Job aid: how to collect a fecal specimen and transfer to transport medium [Internet]. 2018. Available from:
  75. 75.
    Sack D, Lyke C, McLaughlin C, Suwanvanichkij V. Antimicrobial resistance in shigellosis, cholera and campylobacteriosis [internet]. WHO; 2001. Available from:
  76. 76.
    Kim HB, Wang M, Ahmed S, Park CH, LaRocque RC, Faruque ASG, et al. Transferable quinolone resistance in Vibrio cholerae. Antimicrob Agents Chemother. 2010;54(2):799–803.PubMedCrossRefGoogle Scholar
  77. 77.
    Klontz EH, Das SK, Ahmed D, Ahmed S, Chisti MJ, Malek MA, et al. Long-term comparison of antibiotic resistance in Vibrio cholerae O1 and Shigella species between urban and rural Bangladesh. Clin Infect Dis. 2014;58(9):e133–6.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kitaoka M, Miyata ST, Unterweger D, Pukatzki S. Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol. 2011;60(4):397–407.PubMedCrossRefGoogle Scholar
  79. 79.
    Dengo-Baloi LC, Semá-Baltazar CA, Manhique LV, Chitio JE, Inguane DL, Langa JP. Antibiotics resistance in El Tor Vibrio cholerae O1 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One. 2017;12(8):e0181496.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Miwanda B, Moore S, Muyembe J-J, Nguefack-Tsague G, Kabangwa IK, Ndjakani DY, et al. Antimicrobial drug resistance of Vibrio cholerae. Democratic Republic of the Congo Emerg Infect Dis. 2015;21(5):847–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Nelson EJ, Nelson DS, Salam MA, Sack DA. Antibiotics for both moderate and severe cholera. N Engl J Med. 2011;364(1):5–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Salimi-Khourashad A, Tatabee M, Amirabadi A, Roudbar-Mohamadi S. Vibrio cholerae and changing of microbial resistance patterns in Sistan and Balouchestan Province. Zahedan J Res Med Sci. 2012;14(8):63–6.Google Scholar
  83. 83.
    Domman D, Quilici M-L, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, et al. Integrated view of Vibrio cholerae in the Americas. Science. 2017;358(6364):789–93.PubMedCrossRefGoogle Scholar
  84. 84.
    Weill F-X, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358(6364):785–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Matias WR, Julceus FE, Abelard C, Mayo-Smith LM, Franke MF, Harris JB, Ivers LC. Laboratory evaluation of immunochromatographic rapid diagnostic tests for cholera in Haiti. Azman AS, editor PLoS ONE 2017;12(11):e0186710.Google Scholar
  86. 86.
    Sayeed MA, Islam K, Hossain M, Akter NJ, Alam MN, Sultana N, et al. Development of a new dipstick (Cholkit) for rapid detection of Vibrio cholerae O1 in acute watery diarrheal stools. PLoS Negl Trop Dis. 2018;12(3):e0006286.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    GTFCC. Interim technical note the use of cholera rapid diagnostic tests November 2016 [internet]. WHO/GTFCC; 2016. Available from:
  88. 88.
    Debes AK, Chakraborty S, Ali M, Sack D. Manual for detecting Vibrio cholerae O1 and O139 from fecal samples and from environmental water using a dipstick assay [internet]. JHSPH; 2014. Available from:
  89. 89.
    WHO. Interim guidance document on cholera surveillance—GTFCC Surveillance Working Group [Internet]. WHO/GTFCC; 2017. Available from:
  90. 90.
    Page A-L, Alberti KP, Mondonge V, Rauzier J, Quilici M-L, Guerin PJ. Evaluation of a rapid test for the diagnosis of cholera in the absence of a gold standard. PLoS One. 2012;7(5):e37360.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Dick MH, Guillerm M, Moussy F, Chaignat C-L. Review of two decades of cholera diagnostics—how far have we really come? PLoS Negl Trop Dis. 2012;6(10):e1845.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    CDC. The laboratory methods for the diagnosis of Vibrio cholerae. Chapter 5. Examination of food and environmental samples [Internet]. 2016. Available from:
  93. 93.
    Huq A, Haley BJ, Taviani E, Chen A, Hasan NA, Colwell RR. Detection, isolation, and identification of Vibrio cholerae from the environment. In: Coico R, Kowalik T, Quarles J, Stevenson B, Taylor R, editors. Current protocols in microbiology [internet]. Hoboken: John Wiley & Sons, Inc.; 2012. [cited 2018 May 24]. Available from: Scholar
  94. 94.
    Banwell JG, Pierce NF, Mitra RC, Brigham KL, Caranasos GJ, Keimowitz RI, et al. Intestinal fluid and electrolyte transport in human cholera. J Clin Invest. 1970;49(1):183–95.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Tariq M, Memon M, Jafferani A, Shoukat S, Gowani SA, Nusrat R, et al. Massive fluid requirements and an unusual BUN/creatinine ratio for pre-renal failure in patients with cholera. PLoS One. 2009;4(10):e7552.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pollitzer R. Cholera studies. IX. Symptomatology, diagnosis, prognosis, and treatment. Bull World Health Organ. 1957;16(2):295–430.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Bart KJ, Huq Z, Khan M, Mosley WH. Seroepidemiologic studies during a simultaneous epidemic of infection with El Tor Ogawa and classical Inaba Vibrio cholerae. J Infect Dis. 1970;121(Suppl 121):517–24.Google Scholar
  98. 98.
    Harris JB, LaRocque RC, Chowdhury F, Khan AI, Logvinenko T, Faruque ASG, et al. Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl Trop Dis. 2008;2(4):e221.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Nelson EJ, Harris JB, Morris JGJ, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol. 2009;7(10):693–702.PubMedCrossRefGoogle Scholar
  100. 100.
    Lindenbaum J, Greenough WB, Islam MR. Antibiotic therapy of cholera in children. Bull World Health Organ. 1967;37(4):529–38.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Greenough WB 3rd, Gordon RSJ, Rosenberg IS, Davies BI, Benenson AS. Tetracycline in the treatment of cholera. Lancet. 1964;1(7329):355–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Rahaman MM, Majid MA, AKMJ A, Islam MR. Effects of doxycycline in actively purging cholera patients: a double-blind clinical trial. Antimicrob Agents Chemother. 1976;10(4):610–2.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kaushik JS, Gupta P, Faridi MM, Das S. Single dose azithromycin versus ciprofloxacin for cholera in children: a randomized controlled trial. Indian Pediatr. 2010;47(4):309–15.PubMedCrossRefGoogle Scholar
  104. 104.
    Roy SK, Islam A, Ali R, Islam KE, Khan RA, Ara SH, et al. A randomized clinical trial to compare the efficacy of erythromycin, ampicillin and tetracycline for the treatment of cholera in children. Trans R Soc Trop Med Hyg. 1998;92(4):460–2.PubMedCrossRefGoogle Scholar
  105. 105.
    Das S, Choudhry S, Saha R, Ramachandran VG, Kaur K, Sarkar BL. Emergence of multiple drug resistance Vibrio cholerae O1 in East Delhi. J Infect Dev Ctries. 2011;5(4):294–8.PubMedGoogle Scholar
  106. 106.
    Marin MA, Thompson CC, Freitas FS, Fonseca EL, Aboderin AO, Zailani SB, et al. Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 2013;7(2):e2049.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Sjolund-Karlsson M, Reimer A, Folster JP, Walker M, Dahourou GA, Batra DG, et al. Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis. 2011;17(11):2151–4.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Roy SK, Hossain MJ, Khatun W, Chakraborty B, Chowdhury S, Begum A, et al. Zinc supplementation in children with cholera in Bangladesh: randomised controlled trial. BMJ. 2008;336(7638):266–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zijlmans WCWR, van Kempen AAMW, Serlie MJ, Sauerwein HP. Glucose metabolism in children: influence of age, fasting, and infectious diseases. Metabolism. 2009;58(9):1356–65.PubMedCrossRefGoogle Scholar
  110. 110.
    Griffith LS, Fresh JW, Watten RH, Villaroman MP. Electrolyte replacement in paediatric cholera. Lancet Lond Engl. 1967;1(7501):1197–9.CrossRefGoogle Scholar
  111. 111.
    Molla AM, Rahman M, Sarker SA, Sack DA, Molla A. Stool electrolyte content and purging rates in diarrhea caused by rotavirus, enterotoxigenic E. coli, and V. cholerae in children. J Pediatr. 1981;98(5):835–8.PubMedCrossRefGoogle Scholar
  112. 112.
    WHO. Guideline: Updates on the management of severe acute malnutrition in infants and children. Geneva: World Health Organization; 2013.Google Scholar
  113. 113.
    WHO. Management of severe malnutrition: A manual for physicians and other senior health workers [Internet]. WHO; 1999. Available from:;jsessionid=7828902D32C1C1A2CD548642A1F8EEC0?sequence=1.
  114. 114.
    Ververs M, Narra R. Treating cholera in severely malnourished children in the horn of Africa and Yemen. Lancet. 2017;390(10106):1945–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Schillberg E, Ariti C, Bryson L, Delva-Senat R, Price D, GrandPierre R, et al. Factors related to fetal death in pregnant women with cholera, Haiti, 2011-2014. Emerg Infect Dis. 2016;22(1):124–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ciglenecki I, Bichet M, Tena J, Mondesir E, Bastard M, Tran N-T, et al. Cholera in pregnancy: outcomes from a specialized cholera treatment unit for pregnant women in Leogane, Haiti. PLoS Negl Trop Dis. 2013;7(8):e2368.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hirschhorn N, Chowdhury AK, Lindenbaum J. Cholera in pregnant women. Lancet Lond Engl. 1969;1(7608):1230–2.CrossRefGoogle Scholar
  118. 118.
    Cutler D, Miller G. The role of public health improvements in health advances: the twentieth-century United States. Demography. 2005;42(1):1–22.PubMedCrossRefGoogle Scholar
  119. 119.
    Sepúlveda J, Valdespino JL, García-García L. Cholera in Mexico: the paradoxical benefits of the last pandemic. Int J Infect Dis. 2006;10(1):4–13.PubMedCrossRefGoogle Scholar
  120. 120.
    Alcayaga S, Alcayaga J, Gassibe P. Changes in the morbidity profile of certain enteric infections after the cholera epidemic. Rev Chile Infect. 1993;1:5–10.Google Scholar
  121. 121.
    Mintz ED, Blackstock AJ, Nygren BL. Cholera at the crossroads: the association between endemic cholera and national access to improved water sources and sanitation. Am J Trop Med Hyg. 2014;91(5):1023–8.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Taylor DL, Kahawita TM, Cairncross S, Ensink JHJ. The impact of water, sanitation and hygiene interventions to control cholera: a systematic review. Bhutta ZA, editor. PLOS ONE. 2015;10(8):e0135676.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wang A, Hardy C, Rajasingham A, Martinsen A, Templin L, Kamwaga S, et al. Notes from the field: chlorination strategies for drinking water during a cholera epidemic—Tanzania. 2016 MMWR Morb Mortal Wkly Rep. 2016;65(41):1150–1.PubMedCrossRefGoogle Scholar
  124. 124.
    Sinyange N, Brunkard JM, Kapata N, Mazaba ML, Musonda KG, Hamoonga R, et al. Cholera epidemic—Lusaka, Zambia, October 2017-May 2018. MMWR Morb Mortal Wkly Rep. 2018;67(19):556–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Alam M, Sack RB, Parvin T, George CM, Zohura F, Shaly NJ, et al. Promotion of cholera awareness among households of cholera patients: a randomized controlled trial of the cholera-hospital-based-intervention-for-7 days (CHoBI7) intervention. Am J Trop Med Hyg. 2016;95(6):1292–8.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    George CM, Monira S, Sack DA, Rashid M, Saif-Ur-Rahman KM, Mahmud T, et al. Randomized controlled trial of hospital-based hygiene and water treatment intervention (CHoBI7) to reduce cholera. Emerg Infect Dis. 2016;22(2):233–41.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Sack RB, Saif-Ur-Rahman KM, Bhuyian SI, Akhter S, Mahmud T, Sack D, et al. Chlorination of household drinking water among cholera patients’ households to prevent transmission of toxigenic Vibrio cholerae in Dhaka, Bangladesh: CHoBI7 trial. Am J Trop Med Hyg. 2016;95(6):1299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    UNICEF, CDC, MSF. Draft document for a position paper against chlorine spraying at households of cholera patients [internet]. UNICEF, CDC, MSF; 2011. Available from:
  129. 129.
    ICG. Oral cholera vaccine stockpile for cholera emergency response [Internet]. ICG; 2013. Available from:
  130. 130.
    • WHO. Cholera vaccines: WHO Position paper—August 2107. Wkly Epidemiol Rec. 2017;92(34):477–500. Review of oral cholera vaccines currently in use. Google Scholar
  131. 131.
    WHO. Deployments from the oral cholera vaccine stockpile, 2013-2017. Wkly Epidemiol Rec. 2017;92(32):437–42.Google Scholar
  132. 132.
    Khan AI, Ali M, Chowdhury F, Saha A, Khan IA, Khan A, et al. Safety of the oral cholera vaccine in pregnancy: retrospective findings from a subgroup following mass vaccination campaign in Dhaka. Bangladesh Vaccine. 2017;35(11):1538–43.PubMedCrossRefGoogle Scholar
  133. 133.
    Hashim R, Khatib AM, Enwere G, Park JK, Reyburn R, Ali M, et al. Safety of the recombinant cholera toxin B subunit, killed whole-cell (rBS-WC) oral cholera vaccine in pregnancy. PLoS Negl Trop Dis. 2012;6(7):e1743.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Grout L, Martinez-Pino I, Ciglenecki I, Keita S, Diallo AA, Traore B, et al. Pregnancy outcomes after a mass vaccination campaign with an oral cholera vaccine in Guinea: a retrospective cohort study. PLoS Negl Trop Dis. 2015;9(12):e0004274.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bhattacharya SK, Sur D, Ali M, Kanungo S, You YA, Manna B, et al. 5 year efficacy of a bivalent killed whole-cell oral cholera vaccine in Kolkata, India: a cluster-randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2013;13(12):1050–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Ivers LC, Hilaire IJ, Teng JE, Almazor CP, Jerome JG, Ternier R, et al. Effectiveness of reactive oral cholera vaccination in rural Haiti: a case-control study and bias-indicator analysis. Lancet Glob Health. 2015;3(3):e162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Azman AS, Parker LA, Rumunu J, Tadesse F, Grandesso F, Deng LL, et al. Effectiveness of one dose of oral cholera vaccine in response to an outbreak: a case-cohort study. Lancet Glob Health. 2016;4(11):e856–63.PubMedCrossRefGoogle Scholar
  138. 138.
    Qadri F, Wierzba TF, Ali M, Chowdhury F, Khan AI, Saha A, et al. Efficacy of a single-dose, inactivated oral cholera vaccine in Bangladesh. N Engl J Med. 2016;374(18):1723–32.PubMedCrossRefGoogle Scholar
  139. 139.
    Desai SN, Pezzoli L, Alberti KP, Martin S, Costa A, Perea W, et al. Achievements and challenges for the use of killed oral cholera vaccines in the global stockpile era. Hum Vaccines Immunother. 2017;13(3):579–87.CrossRefGoogle Scholar
  140. 140.
    Qadri F, Ali M, Lynch J, Chowdhury F, Khan AI, Wierzba TF, et al. Efficacy of a single-dose regimen of inactivated whole-cell oral cholera vaccine: results from 2 years of follow-up of a randomised trial. Lancet Infect Dis 2018;18(6):666–74.Google Scholar
  141. 141.
    Guevart E, Solle J, Noeske J, Amougou G, Mouangue A, Fouda AB. Mass antibiotic prophylaxis against cholera in the new bell central prison in Douala during the 2004 epidemic. Sante. 2005;15(4):225–7.PubMedGoogle Scholar
  142. 142.
    Bwire G, Makumbi I, Mintz E, Malimbo M, Mengel MA, Kagirita A, et al. Nosocomial cholera outbreak in a mental hospital: challenges and lessons learnt from Butabika National Referral Mental Hospital. Uganda Am J Trop Med Hyg. 2015;93(3):534–8.PubMedCrossRefGoogle Scholar
  143. 143.
    UNICEF. UNICEF cholera toolkit [internet]. UNICEF; 2017. Available from:
  144. 144.
  145. 145.
    Reveiz L, Chapman E, Ramon-Pardo P, Koehlmoos TP, Cuervo LG, Aldighieri S, et al. Chemoprophylaxis in contacts of patients with cholera: systematic review and meta-analysis. von Seidlein L, editor. PLoS ONE. 2011;6(11):e27060.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Weber JT, Mintz ED, Canizares R, Semiglia A, Gomez I, Sempertegui R, et al. Epidemic cholera in Ecuador: multidrug-resistance and transmission by water and seafood. Epidemiol Infect. 1994;112(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Towner KJ, Pearson NJ, Mhalu FS, O’Grady F. Resistance to antimicrobial agents of Vibrio cholerae E1 Tor strains isolated during the fourth cholera epidemic in the United Republic of Tanzania. Bull World Health Organ. 1980;58(5):747–51.PubMedPubMedCentralGoogle Scholar
  148. 148.
    WHO. Cholera vaccines: WHO position paper—August 2017 [Internet]. WHO/WER; 2017. Available from:
  149. 149.
    Bi Q, Ferreras E, Pezzoli L, Legros D, Ivers LC, Date K, et al. Protection against cholera from killed whole-cell oral cholera vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2017;17(10):1080–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and PreventionAtlantaUSA

Personalised recommendations