Advertisement

Current Epidemiology Reports

, Volume 5, Issue 3, pp 230–242 | Cite as

Looking to the Future: Spotlight on Emerging Biomarkers for Predicting Cardiovascular Risk

  • Kathryn E. Hally
  • Kirsty M. Danielson
  • Peter D. Larsen
Cardiovascular Disease (R Foraker, Section Editor)
  • 37 Downloads
Part of the following topical collections:
  1. Topical Collection on Cardiovascular Disease

Abstract

Purpose of Review

Coronary artery disease (CAD) continues to be a major contributor to death and disability worldwide. Emerging biomarkers that are linked to CAD pathophysiology have the potential to phenotype CAD severity and identify individuals at high risk for experiencing future CAD events. This review discusses the utility of emergent biomarkers for CAD risk prediction.

Recent Findings

Monocytes and neutrophils are key effectors of cardiovascular inflammation, and aspects of their biology have recently been associated with cardiovascular risk. In particular, intermediate (Mon2) monocytosis is robustly associated with major adverse cardiovascular events (MACE) and surrogate markers of neutrophil extracellular trap (NET) formation have also emerged as independent predictors of MACE. MicroRNAs (miRNAs) are essential regulators of cardiovascular physiology, and a wealth of data suggests that circulating miRNA levels are linked with risk of future CAD events. A number of studies demonstrate the predictive value of a multi-miRNA panel in assessing risk and this approach is likely to more accurately predict progression of CAD to a clinically overt event, over a single-marker approach.

Summary

A number of emerging inflammatory and miRNA biomarkers hold promise for phenotyping an individual’s risk of future CAD events. Research into these particular biomarkers is in its infancy, and independent validation and methodological standardization is now required to facilitate their translation into clinical use. Ultimately, a biomarker-based methodology for identifying a high-risk phenotype will allow for targeted and personalized therapy for CAD prevention.

Keywords

Coronary artery disease Monocytes Neutrophils Inflammation MicroRNAs Prognosis 

Notes

Compliance with Ethical Standards

Conflict of Interest

K.E.H. reports grants from Wellington Medical Research Foundation, Lottery Health Research, and Victoria University of Wellington, outside the submitted work. K.M.D. declares no conflicts of interest. P.D.L. reports grants from Wellington Medical Research Foundation, Lotteries Health Research, Otago Medical School Research Grant, Dean’s Research Grant University of Otago, and Health Research Council New Zealand, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Cardiovascular diseases (CVDs). World Health Organization. 2017. http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed February 2018.
  2. 2.
    Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122(9):1302–15.  https://doi.org/10.1161/circresaha.117.310782.CrossRefPubMedGoogle Scholar
  3. 3.
    Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14(3):133–44.  https://doi.org/10.1038/nrcardio.2016.185.CrossRefPubMedGoogle Scholar
  4. 4.
    Fang L, Moore X-L, Dart AM, Wang L-M. Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol. 2015;12(3):305–12.  https://doi.org/10.11909/j.issn.1671-5411.2015.03.020. PubMedPubMedCentralGoogle Scholar
  5. 5.
    Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2016;67(17):2050–60.  https://doi.org/10.1016/j.jacc.2016.01.073.CrossRefPubMedGoogle Scholar
  6. 6.
    Porrello Enzo R. microRNAs in cardiac development and regeneration. Clin Sci. 2013;125(4):151–66.  https://doi.org/10.1042/cs20130011.CrossRefPubMedGoogle Scholar
  7. 7.
    Condorelli G, Latronico MVG, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 2014;63(21):2177–87.  https://doi.org/10.1016/j.jacc.2014.01.050.CrossRefPubMedGoogle Scholar
  8. 8.
    Nouraee N, Mowla SJ. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet. 2015;6(232)  https://doi.org/10.3389/fgene.2015.00232.
  9. 9.
    Ghattas A, Griffiths HR, Devitt A, Lip GYH, Shantsila E. Monocytes in coronary artery disease and atherosclerosis Where Are We Now? J Am Coll Cardiol. 2013;62(17):1541–51.  https://doi.org/10.1016/j.jacc.2013.07.043.CrossRefPubMedGoogle Scholar
  10. 10.
    Owens AP, Passam FH, Antoniak S, Marshall SM, McDaniel AL, Rudel L, et al. Monocyte tissue factor–dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest. 2012;122(2):558–68.  https://doi.org/10.1172/JCI58969.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gremmel T, Ay C, Riedl J, Kopp CW, Eichelberger B, Koppensteiner R, et al. Platelet-specific markers are associated with monocyte-platelet aggregate formation and thrombin generation potential in advanced atherosclerosis. Thromb Haemost. 2016;115(3):615–21.  https://doi.org/10.1160/th15-07-0598.CrossRefPubMedGoogle Scholar
  12. 12.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J-L, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.  https://doi.org/10.1084/jem.20070885.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Weber C, Shantsila E, Hristov M, Caligiuri G, Guzik T, Heine GH, et al. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) working groups “Atherosclerosis & Vascular Biology” and “Thrombosis”. Thromb Haemost. 2016;116(4):626–37.  https://doi.org/10.1160/th16-02-0091. PubMedGoogle Scholar
  14. 14.
    Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80.  https://doi.org/10.1182/blood-2010-02-258558.CrossRefPubMedGoogle Scholar
  15. 15.
    Idzkowska E, Eljaszewicz A, Miklasz P, Musial WJ, Tycinska AM, Moniuszko M. The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scand J Immunol. 2015;82(3):163–73.  https://doi.org/10.1111/sji.12314.CrossRefPubMedGoogle Scholar
  16. 16.
    Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–31.  https://doi.org/10.1182/blood-2010-12-326355.CrossRefPubMedGoogle Scholar
  17. 17.
    Zeng S, Zhou X, Ge L, Ji WJ, Shi R, Lu RY, et al. Monocyte subsets and monocyte-platelet aggregates in patients with unstable angina. J Thromb Thrombolysis. 2014;38(4):439–46.  https://doi.org/10.1007/s11239-014-1083-4.CrossRefPubMedGoogle Scholar
  18. 18.
    Wrigley BJ, Shantsila E, Tapp LD, Lip GYH. CD14++CD16+ monocytes in patients with acute ischaemic heart failure. Eur J Clin Investig. 2013;43(2):121–30.  https://doi.org/10.1111/eci.12023.CrossRefGoogle Scholar
  19. 19.
    Amir O, Spivak I, Lavi I, Rahat MA. Changes in the monocytic subsets CD14(dim)CD16(+) and CD14(++)CD16(−) in chronic systolic heart failure patients. Mediat Inflamm. 2012;2012:616384.  https://doi.org/10.1155/2012/616384.CrossRefGoogle Scholar
  20. 20.
    Tapp LD, Shantsila E, Wrigley BJ, Pamukcu B, Lip GY. The CD14++CD16+ monocyte subset and monocyte–platelet interactions in patients with ST-elevation myocardial infarction. J Thromb Haemost. 2012;10(7):1231–41.  https://doi.org/10.1111/j.1538-7836.2011.04603.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaito M, Araya S, Gondo Y, Fujita M, Minato N, Nakanishi M, et al. Relevance of distinct monocyte subsets to clinical course of ischemic stroke patients. PLoS One. 2013;8(8):e69409.  https://doi.org/10.1371/journal.pone.0069409.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Berg KE, Ljungcrantz I, Andersson L, Bryngelsson C, Hedblad B, Fredrikson GN, et al. Elevated CD14++CD16− monocytes predict cardiovascular events. Circ Cardiovasc Genet. 2012;5(1):122–31.  https://doi.org/10.1161/circgenetics.111.960385.CrossRefPubMedGoogle Scholar
  23. 23.
    Cappellari R, D'Anna M, Bonora BM, Rigato M, Cignarella A, Avogaro A, et al. Shift of monocyte subsets along their continuum predicts cardiovascular outcomes. Atherosclerosis. 2017;266:95–102.  https://doi.org/10.1016/j.atherosclerosis.2017.09.032.CrossRefPubMedGoogle Scholar
  24. 24.
    Cignarella A, Tedesco S, Cappellari R, Fadini GP. The continuum of monocyte phenotypes: experimental evidence and prognostic utility in assessing cardiovascular risk. J Leukoc Biol 2018. doi: https://doi.org/10.1002/jlb.5ru1217-477rr.
  25. 25.
    •• Zeng S, Yan LF, Luo YW, Liu XL, Liu JX, Guo ZZ, et al. Trajectories of circulating monocyte subsets after ST-elevation myocardial infarction during hospitalization: latent class growth modeling for high-risk patient identification. J Cardiovasc Transl Res. 2018;11(1):22–32.  https://doi.org/10.1007/s12265-017-9782-9. This study was the first to apply latent class growth modelling (LCGM) to identify a high-risk Mon2 phenotype in STEMI patients. LCGM searches for distinct “trajectories” of a measurement over time and can be used to examine the association of these trajectories with clinical outcome. The most common use of LCGM within the literature is to examine trends within epidemiology data collected over years. Zeng and colleagues shorten this time frame: trajectories were identified during hospitalization for STEMI, and the authors demonstrate the feasibility of translating this tool into clinical cardiology studies. CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou X, Liu XL, Ji WJ, Liu JX, Guo ZZ, Ren D, et al. The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine (Baltimore). 2016;95(18):e3466.  https://doi.org/10.1097/md.0000000000003466.CrossRefGoogle Scholar
  27. 27.
    •• Zawada AM, Fell LH, Untersteller K, Seiler S, Rogacev KS, Fliser D, et al. Comparison of two different strategies for human monocyte subsets gating within the large-scale prospective care for home study. Cytometry A. 2015;87(8):750–8.  https://doi.org/10.1002/cyto.a.22703. This study recognizes that a limitation for Mon2 monocytosis as a risk biomarker is that delineating this subset from Mon3 monocytes is non-standardized and subjective. There are two flow cytometry gating strategies (rectangular versus trapezoid gating) that are most commonly used to identify Mon2 monocytes, and Zawada and colleagues demonstrate that Mon2 monocytosis was significantly associated with future cardiovascular risk irrespective of the type of gating strategy used. Either of these gating strategies is sufficient to delineate these monocyte populations, and this study standardizes the gating options that should be used in future studies. CrossRefPubMedGoogle Scholar
  28. 28.
    Lu W, Zhang Z, Fu C, Ma G. Intermediate monocytes lead to enhanced myocardial remodelling in STEMI patients with diabetes. Int Heart J. 2015;56(1):22–8.  https://doi.org/10.1536/ihj.14-174.CrossRefPubMedGoogle Scholar
  29. 29.
    Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, et al. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol. 2012;60(16):1512–20.  https://doi.org/10.1016/j.jacc.2012.07.019. CrossRefPubMedGoogle Scholar
  30. 30.
    Stull DE, Wiklund I, Gale R, Capkun-Niggli G, Houghton K, Jones P. Application of latent growth and growth mixture modeling to identify and characterize differential responders to treatment for COPD. Contemp Clin Trials. 2011;32(6):818–28.  https://doi.org/10.1016/j.cct.2011.06.004.CrossRefPubMedGoogle Scholar
  31. 31.
    Koning M, Hoekstra T, de Jong E, Visscher TL, Seidell JC, Renders CM. Identifying developmental trajectories of body mass index in childhood using latent class growth (mixture) modelling: associations with dietary, sedentary and physical activity behaviors: a longitudinal study. BMC Public Health. 2016;16(1):1128.  https://doi.org/10.1186/s12889-016-3757-7. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ziegler-Heitbrock L, Hofer TPJ. Toward a refined definition of monocyte subsets. Front Immunol. 2013;4:23.  https://doi.org/10.3389/fimmu.2013.00023.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rogacev KS, Seiler S, Zawada AM, Reichart B, Herath E, Roth D, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J. 2011;32(1):84–92.  https://doi.org/10.1093/eurheartj/ehq371.CrossRefPubMedGoogle Scholar
  34. 34.
    Jacobi J, Sela S, Cohen HI, Chezar J, Kristal B. Priming of polymorphonuclear leukocytes: a culprit in the initiation of endothelial cell injury. Am J Physiol Heart Circ Physiol. 2006;290(5):H2051–8.  https://doi.org/10.1152/ajpheart.01040.2005.CrossRefPubMedGoogle Scholar
  35. 35.
    Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H, et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood. 2008;112(4):1461–71.  https://doi.org/10.1182/blood-2008-02-139634.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation. 2001;104(16):1899–904.  https://doi.org/10.1161/hc4101.097419.CrossRefPubMedGoogle Scholar
  37. 37.
    Hosokawa T, Kumon Y, Kobayashi T, Enzan H, Nishioka Y, Yuri K, et al. Neutrophil infiltration and oxidant-production in human atherosclerotic carotid plaques. Histol Histopathol. 2011;26(1):1–11.  https://doi.org/10.14670/hh-26.1. PubMedGoogle Scholar
  38. 38.
    Darbousset R, Thomas GM, Mezouar S, Frere C, Bonier R, Mackman N, et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133–43.  https://doi.org/10.1182/blood-2012-06-437772.CrossRefPubMedGoogle Scholar
  39. 39.
    Frodermann V, Nahrendorf M. Neutrophil-macrophage cross-talk in acute myocardial infarction. Eur Heart J. 2017;38(3):198–200.  https://doi.org/10.1093/eurheartj/ehw085.PubMedGoogle Scholar
  40. 40.
    Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017;38(3):187–97.  https://doi.org/10.1093/eurheartj/ehw002.PubMedGoogle Scholar
  41. 41.
    Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation. 1989;80(6):1816–27.  https://doi.org/10.1161/01.CIR.80.6.1816.CrossRefPubMedGoogle Scholar
  42. 42.
    Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61(3):481–97.  https://doi.org/10.1016/j.cardiores.2003.10.011.CrossRefPubMedGoogle Scholar
  43. 43.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.  https://doi.org/10.1126/science.1092385.CrossRefPubMedGoogle Scholar
  44. 44.
    Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Neutrophil extracellular traps license macrophages and Th17 cells for cytokine production in atherosclerosis. Science (New York, NY). 2015;349(6245):316–20.  https://doi.org/10.1126/science.aaa8064. CrossRefGoogle Scholar
  45. 45.
    Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661–71.  https://doi.org/10.1172/JCI61303. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McDonald B, Davis RP, Kim SJ, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67.  https://doi.org/10.1182/blood-2016-09-741298.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–88.  https://doi.org/10.1111/jth.12710.CrossRefPubMedGoogle Scholar
  48. 48.
    Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci. 2010;107(36):15880–5.  https://doi.org/10.1073/pnas.1005743107.CrossRefPubMedGoogle Scholar
  49. 49.
    Mangold A, Alias S, Scherz T, Hofbauer T, Jakowitsch J, Panzenbock A, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182–92.  https://doi.org/10.1161/circresaha.116.304944. CrossRefPubMedGoogle Scholar
  50. 50.
    Riegger J, Byrne RA, Joner M, Chandraratne S, Gershlick AH, Ten Berg JM, et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J. 2016;37(19):1538–49.  https://doi.org/10.1093/eurheartj/ehv419.CrossRefPubMedGoogle Scholar
  51. 51.
    Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33(8):2032–40.  https://doi.org/10.1161/atvbaha.113.301627.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    •• Langseth MS, Opstad TB, Bratseth V, Solheim S, Arnesen H, Pettersen AÅ, et al. Markers of neutrophil extracellular traps are associated with adverse clinical outcome in stable coronary artery disease. Eur J Prev Cardiol. 2018;25(7):762–9.  https://doi.org/10.1177/2047487318760618. Double-stranded DNA was identified in this study as a marker of NET formation, and was shown to have prognostic utility in a stable CAD cohort. This study suggests that enhanced NET formation may play a role in the risk of atherothrombosis and, subsequently, the risk of future cardiovascular events. CrossRefPubMedGoogle Scholar
  53. 53.
    Kithcart AP, Libby P. Casting NETs to predict cardiovascular outcomes. Eur J Prev Cardiol. 2018;25(7):759–61.  https://doi.org/10.1177/2047487318766413.CrossRefPubMedGoogle Scholar
  54. 54.
    Arroyo AB, de Los Reyes-Garcia AM, Rivera-Caravaca JM, Valledor P, Garcia-Barbera N, Roldan V, et al. MiR-146a regulates neutrophil extracellular trap formation that predicts adverse cardiovascular events in patients with atrial fibrillation. Arterioscler Thromb Vasc Biol. 2018;38(4):892–902.  https://doi.org/10.1161/atvbaha.117.310597.CrossRefPubMedGoogle Scholar
  55. 55.
    Ebrahimi F, Giaglis S, Hahn S, Blum CA, Baumgartner C, Kutz A, et al. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: secondary analysis of a randomised controlled trial. Eur Respir J. 2018;51(4):1701389.  https://doi.org/10.1183/13993003.01389-2017.CrossRefPubMedGoogle Scholar
  56. 56.
    • Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15:623–5.  https://doi.org/10.1038/nm.1959. The methodology for identifying myeloperoxidase–DNA complexes by ELISA described in this paper is used extensively in neutrophil extracellular trap (NET) research. We suggest that this methodology should be used as a standard for future studies investigating this NET biomarker. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jiménez-Alcázar M, Limacher A, Panda R, Méan M, Bitterling J, Peine S, et al. Circulating extracellular DNA is an independent predictor of mortality in elderly patients with venous thromboembolism. PLoS One. 2018;13(2):e0191150.  https://doi.org/10.1371/journal.pone.0191150.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Miyoshi A, Yamada M, Shida H, Nakazawa D, Kusunoki Y, Nakamura A, et al. Circulating neutrophil extracellular trap levels in well-controlled type 2 diabetes and pathway involved in their formation induced by high-dose glucose. Pathobiology. 2016;83(5):243–51.  https://doi.org/10.1159/000444881. CrossRefPubMedGoogle Scholar
  59. 59.
    Thålin C, Lundström S, Seignez C, Daleskog M, Lundström A, Henriksson P, et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One. 2018;13(1):e0191231.  https://doi.org/10.1371/journal.pone.0191231.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Masuda S, Nakazawa D, Shida H, Miyoshi A, Kusunoki Y, Tomaru U, et al. NETosis markers: quest for specific, objective, and quantitative markers. Clin Chim Acta. 2016;459:89–93.  https://doi.org/10.1016/j.cca.2016.05.029.CrossRefPubMedGoogle Scholar
  61. 61.
    • Kong T, Kim TH, Park YS, Chung SP, Lee HS, Hong JH, et al. Usefulness of the delta neutrophil index to predict 30-day mortality in patients with ST segment elevation myocardial infarction. Sci Rep. 2017;7(1):15718.  https://doi.org/10.1038/s41598-017-15878-5. This is one of the first studies to translate the use of delta neutrophil index from the setting of sepsis into the setting of cardiovascular disease. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ahn C, Kim W, Lim TH, Cho Y, Choi K-S, Jang B-H. The delta neutrophil index (DNI) as a prognostic marker for mortality in adults with sepsis: a systematic review and meta-analysis. Sci Rep. 2018;8(1):6621.  https://doi.org/10.1038/s41598-018-24211-7.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yune HY, Chung SP, Park YS, Chung HS, Lee HS, Lee JW, et al. Delta neutrophil index as a promising prognostic marker in out of hospital cardiac arrest. PLoS One. 2015;10(3):e0120677.  https://doi.org/10.1371/journal.pone.0120677.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Liu X, Qu J-K, Zhang J, Yan Y, Zhao X-X, Wang J-Z, et al. Prognostic role of pretreatment neutrophil to lymphocyte ratio in breast cancer patients: a meta-analysis. Medicine. 2017;96(45):e8101.  https://doi.org/10.1097/MD.0000000000008101.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tang X, Du P, Yang Y. The clinical use of neutrophil-to-lymphocyte ratio in bladder cancer patients: a systematic review and meta-analysis. Int J Clin Oncol. 2017;22(5):817–25.  https://doi.org/10.1007/s10147-017-1171-5.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang J, Ren Q, Song Y, He M, Zeng Y, Liu Z, et al. Prognostic role of neutrophil–lymphocyte ratio in patients with acute ischemic stroke. Medicine. 2017;96(45):e8624.  https://doi.org/10.1097/MD.0000000000008624.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Celikbilek A, Ismailogullari S, Zararsiz G. Neutrophil to lymphocyte ratio predicts poor prognosis in ischemic cerebrovascular disease. J Clin Lab Anal. 2014;28(1):27–31.  https://doi.org/10.1002/jcla.21639.CrossRefPubMedGoogle Scholar
  68. 68.
    Cook EJ, Walsh SR, Farooq N, Alberts JC, Justin TA, Keeling NJ. Post-operative neutrophil–lymphocyte ratio predicts complications following colorectal surgery. Int J Surg. 2007;5(1):27–30.  https://doi.org/10.1016/j.ijsu.2006.05.013.CrossRefPubMedGoogle Scholar
  69. 69.
    Vulliamy P, McCluney S, Mukherjee S, Ashby L, Amalesh T. Postoperative elevation of the neutrophil: lymphocyte ratio predicts complications following esophageal resection. World J Surg. 2016;40(6):1397–403.  https://doi.org/10.1007/s00268-016-3427-z.CrossRefPubMedGoogle Scholar
  70. 70.
    Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, et al. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol. 2005;45(10):1638–43.  https://doi.org/10.1016/j.jacc.2005.02.054.CrossRefPubMedGoogle Scholar
  71. 71.
    Gazi E, Bayram B, Gazi S, Temiz A, Kirilmaz B, Altun B, et al. Prognostic value of the neutrophil-lymphocyte ratio in patients with ST-elevated acute myocardial infarction. Clin Appl Thromb Hemost. 2015;21(2):155–9.  https://doi.org/10.1177/1076029613492011.CrossRefPubMedGoogle Scholar
  72. 72.
    Zuin M, Rigatelli G, Picariello C, dell'Avvocata F, Marcantoni L, Pastore G, et al. Correlation and prognostic role of neutrophil to lymphocyte ratio and SYNTAX score in patients with acute myocardial infarction treated with percutaneous coronary intervention: a six-year experience. Cardiovasc Revasc Med. 2017;18(8):565–71.  https://doi.org/10.1016/j.carrev.2017.05.007.CrossRefPubMedGoogle Scholar
  73. 73.
    Wada H, Dohi T, Miyauchi K, Shitara J, Endo H. S et al. pre-procedural neutrophil-to-lymphocyte ratio and long-term cardiac outcomes after percutaneous coronary intervention for stable coronary artery disease. Atherosclerosis. 2017;265:35–40.  https://doi.org/10.1016/j.atherosclerosis.2017.08.007. CrossRefPubMedGoogle Scholar
  74. 74.
    Kim SC, Sun KH, Choi DH, Lee YM, Choi SW, Kang SH, et al. Prediction of long-term mortality based on neutrophil–lymphocyte ratio after percutaneous coronary intervention. Am J Med Sci. 2016;351(5):467–72.  https://doi.org/10.1016/j.amjms.2015.12.022.CrossRefPubMedGoogle Scholar
  75. 75.
    Xu N, Tang XF, Yao Y, Zhao X, Chen J, Gao Z, et al. Predictive value of neutrophil to lymphocyte ratio in long-term outcomes of left main and/or three-vessel disease in patients with acute myocardial infarction. Catheter Cardiovasc Interv. 2018;91(S1):551–7.  https://doi.org/10.1002/ccd.27495.CrossRefPubMedGoogle Scholar
  76. 76.
    Dong CH, Wang ZM, Chen SY. Neutrophil to lymphocyte ratio predict mortality and major adverse cardiac events in acute coronary syndrome: a systematic review and meta-analysis. Clin Biochem. 2018;52:131–6.  https://doi.org/10.1016/j.clinbiochem.2017.11.008.CrossRefPubMedGoogle Scholar
  77. 77.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.  https://doi.org/10.1056/NEJMoa1707914.CrossRefPubMedGoogle Scholar
  78. 78.
    • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.  https://doi.org/10.1073/pnas.0804549105. This sentinel study demonstrated the stability and robustness of miRNAs in human plasma and serum, and paved the way for circulating miRNA biomarker research. CrossRefPubMedGoogle Scholar
  79. 79.
    Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, et al. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol. 2012;60(4):290–9.  https://doi.org/10.1016/j.jacc.2012.03.056.CrossRefPubMedGoogle Scholar
  80. 80.
    Bye A, Rosjo H, Nauman J, Silva GJ, Follestad T, Omland T, et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals—the HUNT study. J Mol Cell Cardiol. 2016;97:162–8.  https://doi.org/10.1016/j.yjmcc.2016.05.009.CrossRefPubMedGoogle Scholar
  81. 81.
    Keller T, Boeckel J-N, Groß S, Klotsche J, Palapies L, Leistner D, et al. Improved risk stratification in prevention by use of a panel of selected circulating microRNAs. Sci Rep. 2017;7:4511.  https://doi.org/10.1038/s41598-017-04040-w.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Jakob P, Kacprowski T, Briand-Schumacher S, Heg D, Klingenberg R, Stahli BE, et al. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction. Eur Heart J. 2017;38(7):511–5.  https://doi.org/10.1093/eurheartj/ehw563.PubMedGoogle Scholar
  83. 83.
    Karakas M, Schulte C, Appelbaum S, Ojeda F, Lackner KJ, Munzel T, et al. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease—results from the large AtheroGene study. Eur Heart J. 2017;38(7):516–23.  https://doi.org/10.1093/eurheartj/ehw250.PubMedGoogle Scholar
  84. 84.
    Cortez-Dias N, Costa MC, Carrilho-Ferreira P, Silva D, Jorge C, Calisto C, et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ J. 2016;80(10):2183–91.  https://doi.org/10.1253/circj.CJ-16-0568.CrossRefPubMedGoogle Scholar
  85. 85.
    Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One. 2015;10(12):e0145930.  https://doi.org/10.1371/journal.pone.0145930.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Dong YM, Liu XX, Wei GQ, Da YN, Cha L, Ma CS. Prediction of long-term outcome after acute myocardial infarction using circulating miR-145. Scand J Clin Lab Invest. 2015;75(1):85–91.  https://doi.org/10.3109/00365513.2014.981855.CrossRefPubMedGoogle Scholar
  87. 87.
    Devaux Y, Vausort M, McCann GP, Zangrando J, Kelly D, Razvi N, et al. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet. 2013;6(3):290–8.  https://doi.org/10.1161/circgenetics.113.000077.CrossRefPubMedGoogle Scholar
  88. 88.
    Devaux Y, Vausort M, McCann GP, Kelly D, Collignon O, Ng LL, et al. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One. 2013;8(8):e70644.  https://doi.org/10.1371/journal.pone.0070644.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yang Y, Cheng H-W, Qiu Y, Dupee D, Noonan M, Lin Y-D, et al. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res. 2015;117(5):450–9.  https://doi.org/10.1161/circresaha.117.305962. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Lv P, Zhou M, He J, Meng W, Ma X, Dong S, et al. Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction. Int J Mol Sci. 2014;15(4):5774–88.  https://doi.org/10.3390/ijms15045774.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451(7182):1125–9.  https://doi.org/10.1038/nature06607.CrossRefPubMedGoogle Scholar
  92. 92.
    Poon K-S, Palanisamy K, Chang S-S, Sun K-T, Chen K-B, Li P-C, et al. Plasma exosomal miR-223 expression regulates inflammatory responses during cardiac surgery with cardiopulmonary bypass. Sci Rep. 2017;7(1):10807.  https://doi.org/10.1038/s41598-017-09709-w. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 2010;86(3):410–20.  https://doi.org/10.1093/cvr/cvq010.CrossRefPubMedGoogle Scholar
  94. 94.
    Zeller T, Keller T, Ojeda F, Reichlin T, Twerenbold R, Tzikas S, et al. Assessment of microRNAs in patients with unstable angina pectoris. Eur Heart J. 2014;35(31):2106–14.  https://doi.org/10.1093/eurheartj/ehu151.CrossRefPubMedGoogle Scholar
  95. 95.
    Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106(1):13–23.  https://doi.org/10.1007/s00395-010-0123-2.CrossRefPubMedGoogle Scholar
  96. 96.
    • Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med. 2014;18(3):371–90.  https://doi.org/10.1111/jcmm.12236. Moldovan and colleagues succinctly describe the limitations to circulating miRNA biomarker research and highlight the need to standardize the methodology for miRNA isolation, detection, and normalization. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem. 2014;6(17):1967–84.  https://doi.org/10.4155/fmc.14.116.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324(5935):1710–3.  https://doi.org/10.1126/science.1174381.CrossRefPubMedGoogle Scholar
  99. 99.
    Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-γ agonist protects against myocardial ischaemia–reperfusion injury. Cardiovasc Res. 2010;87(3):535–44.  https://doi.org/10.1093/cvr/cvq053.CrossRefPubMedGoogle Scholar
  100. 100.
    Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–47.  https://doi.org/10.1161/circulationaha.111.030932.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43.  https://doi.org/10.1016/j.omtn.2017.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther. 2016;43(1):102–13.  https://doi.org/10.1111/apt.13432.CrossRefPubMedGoogle Scholar
  103. 103.
    Hong DS, Kang Y-K, Brenner AJ, Sachdev JC, Ejadi S, Borad MJ, et al. MRX34, a liposomal miR-34 mimic, in patients with advanced solid tumors: final dose-escalation results from a first-in-human phase I trial of microRNA therapy. J Clin Oncol. 2016;34(15_suppl):2508.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2508.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kathryn E. Hally
    • 1
    • 2
  • Kirsty M. Danielson
    • 1
    • 2
  • Peter D. Larsen
    • 1
    • 2
  1. 1.Department of Surgery and AnaesthesiaUniversity of OtagoWellingtonNew Zealand
  2. 2.Wellington Cardiovascular Research GroupWellingtonNew Zealand

Personalised recommendations