Advances in Manufacturing

, Volume 7, Issue 2, pp 228–237 | Cite as

Mechanism of brittle fracture in diamond turning of microlens array on polymethyl methacrylate

  • Tian-Feng ZhouEmail author
  • Ben-Shuai Ruan
  • Jia Zhou
  • Xiao-Bin Dong
  • Zhi-Qiang Liang
  • Xi-Bin Wang


Diamond cutting is a popular method to fabricate microlens array (MLA) on polymethyl methacrylate (PMMA); however, it is limited by brittle fracture, which is formed easily on the surface of MLA during the cutting process. In this paper, the formation mechanism of the brittle fracture is studied via a series of experiments including the slow tool servo (STS) cutting experiment of MLA, surface scratching experiment and sudden-stop cutting experiment. The effects of undeformed chip thickness, feed rate, and machining track on brittle fracture formation are investigated in detail. In addition, based on the fracture formation mechanism, a bi-directional cutting approach is proposed to eliminate the regional brittle fracture of the microlens during diamond cutting. An experiment was then conducted to verify the method; the results demonstrated that bi-directional cutting could eliminate brittle fracture entirely. Finally, a spherical MLA with the form error (vPV) of 60 nm and the surface roughness (Ra) of 8 nm was successfully fabricated.


Microlens array (MLA) Polymethyl methacrylate (PMMA) Brittle fracture Bi-directional cutting 



This work was financially supported by the National Key Basic Research Program of China (Grant No. 2015CB059900) and the National Natural Science Foundation of China (Grant No. 51775046). The authors would also like to acknowledge the support from the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 151052).


  1. 1.
    Peter YA, Herzig HP, Dandliker R (2002) Microoptical fiber switch for a large number of interconnects: optical design considerations and experimental realizations using microlens arrays. IEEE J Sel Top Quantum 8(1):46–57CrossRefGoogle Scholar
  2. 2.
    Borrelli NF, Morse DL, Bellman RH et al (1985) Photolytic technique for producing microlenses in photosensitive glass. Appl Opt 24(16):2520CrossRefGoogle Scholar
  3. 3.
    Mao M, Yan J (2016) Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tool Manuf 115:2–14Google Scholar
  4. 4.
    Deng Z, Yang Q, Chen F et al (2015) Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett 40(9):1928–1931CrossRefGoogle Scholar
  5. 5.
    Wang Y, Li D, Luo C et al (2013) Viewing angle enhanced integral imaging display based on double-micro-lens array. J Soc Inf Display 21(7):289–294CrossRefGoogle Scholar
  6. 6.
    Xie W, Wang QH, Wang YZ et al (2014) Depth-enhanced integral imaging system with convex and composite concave micro-lens arrays. Optik 125(20):6087–6089CrossRefGoogle Scholar
  7. 7.
    Ottevaere H, Cox R, Herzig HP et al (2007) Comparing glass and plastic refractive microlenses fabricated with different technologies. J Opt A Pure Appl Opt 8(2006):S407–S429Google Scholar
  8. 8.
    Popovic ZD, Sprague RA, Connell GA (1988) Technique for monolithic fabrication of microlens arrays. Appl Opt 27(7):1281–1284CrossRefGoogle Scholar
  9. 9.
    Croutxé-Barghorn C, Soppera O, Lougnot DJ (2001) Fabrication of refractive microlens arrays by visible, irradiation, of acrylic monomers: influence of photonic, parameters. Eur Phys J Appl Phys 13(1):31–37CrossRefGoogle Scholar
  10. 10.
    Tripathi A, Chokshi TV, Chronis N (2009) A high numerical aperture, polymer-based, planar microlens array. Opt Express 17(22):19908–19918CrossRefGoogle Scholar
  11. 11.
    He M, Yuan XC, Ngo NQ et al (2004) Single-step fabrication of a microlens array in sol gel material by direct laser writing and its application in optical coupling. J Opt A Pure Appl Opt 6(6):94–97CrossRefGoogle Scholar
  12. 12.
    Wu D, Wu SZ, Niu LG et al (2010) High numerical aperture microlens arrays of close packing. Appl Phys Lett 97(3):031109-3Google Scholar
  13. 13.
    Koudriachov V, Cheong WC, Yu WX et al (2002) High sensitive SiO2/TiO2 hybrid sol-gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography. Opt Express 10(14):586–590CrossRefGoogle Scholar
  14. 14.
    Kuo WK, Kuo GF, Lin SY et al (2015) Fabrication and characterization of artificial miniaturized insect compound eyes for imaging. Bioinspir Biomim 10(5):056010CrossRefGoogle Scholar
  15. 15.
    Kuo WK, Hsu JJ, Nien CK et al (2016) Moth-eye-inspired biophotonic surfaces with antireflective and hydrophobic characteristics. ACS Appl Mater Interfaces 8(46):32021–32030CrossRefGoogle Scholar
  16. 16.
    Kuo WK, Lin SY, Hsu SW et al (2017) Fabrication and investigation of the bionic curved visual microlens array films. Opt Mater 66:630–639CrossRefGoogle Scholar
  17. 17.
    Yi AY, Li L (2005) Design and fabrication of a microlens array by use of a slow tool servo. Opt Lett 30(13):1707–1709CrossRefGoogle Scholar
  18. 18.
    Yu DP, Hong GS, Wong YS (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tool Manuf 52(1):13–23CrossRefGoogle Scholar
  19. 19.
    Yan J, Zhang Z, Kuriyagawa T et al (2010) Fabricating micro-structured surface by using single-crystalline diamond end mill. Int J Adv Manuf Technol 51(9–12):957–964CrossRefGoogle Scholar
  20. 20.
    Sumitomo T, Huang H, Zhou L (2011) Deformation and material removal in a nanoscale multi-layer thin film solar panel using nanoscratch. Int J Mach Tool Manuf 51(3):182–189CrossRefGoogle Scholar
  21. 21.
    Arif M, Zhang X, Rahman M et al (2013) A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials. Int J Mach Tool Manuf 64(4):114–122CrossRefGoogle Scholar
  22. 22.
    Morris JC, Callahan DL, Kulik J et al (1995) Origins of the ductile regime in single-point diamond turning of semiconductors. J Am Ceram Soc 78(8):2015–2020CrossRefGoogle Scholar
  23. 23.
    Puttick KE, Rudman MR, Smith KJ et al (1989) Single-point diamond machining of glasses. Proc R Soc Lond 426(1870):19–30CrossRefGoogle Scholar
  24. 24.
    Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957CrossRefGoogle Scholar
  25. 25.
    Sreejith PS, Ngoi BKA (2001) Material removal mechanisms in precision machining of new materials. Int J Mach Tool Manuf 41(12):1831–1843CrossRefGoogle Scholar
  26. 26.
    Shaw MC (1995) Precision finishing. CIRP Ann Manuf Technol 44(1):343–348CrossRefGoogle Scholar
  27. 27.
    Arai S, Wilson SA, Corbett J et al (2009) Ultra-precision grinding of PZT ceramics—surface integrity control and tooling design. Int J Mach Tool Manuf 49(12–13):998–1007CrossRefGoogle Scholar
  28. 28.
    Chen WK, Kuriyagawa T, Huang H et al (2005) Machining of micro aspherical mould inserts. Precis Eng 29(3):315–323CrossRefGoogle Scholar
  29. 29.
    Zhong Z, Venkatesh VC (1995) Semi-ductile grinding and polishing of ophthalmic aspherics and spherics. CIRP Ann Manuf Technol 44(1):339–342CrossRefGoogle Scholar
  30. 30.
    Yin L, Spowage AC, Ramesh K et al (2004) Influence of microstructure on ultraprecision grinding of cemented carbides. Int J Mach Tool Manuf 44(5):533–543CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Fundamental Science for Advanced MachiningBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.School of Mechanical EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations