Advances in Manufacturing

, Volume 7, Issue 2, pp 248–255 | Cite as

Structural, ferromagnetic, and optical properties of Fe and Al co-doped ZnO diluted magnetic semiconductor nanoparticles synthesized under high magnetic field

  • Muhammad Tariq
  • Ying LiEmail author
  • Wen-Xian Li
  • Zhong-Rui Yu
  • Jia-Mei Li
  • Ye-Min Hu
  • Ming-Yuan Zhu
  • Hong-Ming Jin
  • Yang Liu
  • Yi-Bing Li
  • Katerina Skotnicova


In this study, 2% Fe and 3% Al co-doped ZnO nanoparticles were synthesized using a hydrothermal method under high magnetic field (HMF). The influences of HMF on the structural, optical, and ferromagnetic properties of Fe and Al co-doped ZnO nanoparticles were characterized and analyzed. The single-phase wurtzite structure of the synthesized samples was confirmed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy analysis. The application of HMF decreases the particle size of the spherical nanocrystal as observed by scanning electron microscopy (SEM). Optical analysis indicated that the absorption edge shifted towards a higher wavelength (red shift). The nanoparticles synthesized under the HMF exhibited high room temperature ferromagnetism (RTFM) performance because of the high oxygen vacancy (VO) content as revealed by X-ray photoelectron spectroscopy (XPS), which was in agreement with the prediction of the bound magnetic polarons theory.


Fe and Al co-doped ZnO nanoparticles Room temperature ferromagnetism (RTFM) High magnetic field Hydrothermal Optical property 



This work is financially supported by the National Natural Science Foundation of China (Grant No. 51572166). The authors also express gratitude to the Analysis and Research Center of Shanghai University for their valuable Technical Support. Wen-Xian Li also acknowledges research sponsored by the Program for Professor of Special Appointment (Eastern Scholar: TP2014041) at Shanghai Institutions of Higher Learning.


  1. 1.
    Prinz GA (1998) Magnetoelectronics. Science 282:1660–1663CrossRefGoogle Scholar
  2. 2.
    Wolf S, Awschalom D, Buhrman R et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRefGoogle Scholar
  3. 3.
    Tanaka M, Higo Y (2001) Large tunneling magnetoresistance in GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions. Phys Rev Lett 87:026602CrossRefGoogle Scholar
  4. 4.
    Pearton S, Abernathy C, Overberg M et al (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13CrossRefGoogle Scholar
  5. 5.
    Wang Y, Liu H, Li Z et al (2006) Role of structural defects on ferromagnetism in amorphous Cr-doped TiO2 films. Appl Phys Lett 89:042511CrossRefGoogle Scholar
  6. 6.
    Kiomarsipour N, Razavi RS (2012) Characterization and optical property of ZnO nano-, submicro-and microrods synthesized by hydrothermal method on a large-scale. Superlattices Microstruct 52:704–710CrossRefGoogle Scholar
  7. 7.
    Dietl T, Ohno H, Matsukura F (2001) Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B 63:195205CrossRefGoogle Scholar
  8. 8.
    Jalbout AF, Chen H, Whittenburg SL (2002) Monte Carlo simulation on the indirect exchange interactions of Co-doped ZnO film. Appl Phys Lett 81:2217–2219CrossRefGoogle Scholar
  9. 9.
    Kumar S, Basu S, Rana B et al (2014) Structural, optical and magnetic properties of sol-gel derived ZnO: Co diluted magnetic semiconductor nanocrystals: an EXAFS study. J Mater Chem C 2:481–495CrossRefGoogle Scholar
  10. 10.
    Vijayaprasath G, Murugan R, Asaithambi S et al (2016) Structural and magnetic behavior of Ni/Mn co-doped ZnO nanoparticles prepared by co-precipitation method. Ceram Int 42:2836–2845CrossRefGoogle Scholar
  11. 11.
    Straumal BB, Protasova SG, Mazilkin AA et al (2013) Ferromagnetic behavior of Fe-doped ZnO nanograined films. Beilstein J Nanotechnol 4:361CrossRefGoogle Scholar
  12. 12.
    Liu H, Cheng X, Liu H et al (2012) Properties of Cu and V co-doped ZnO nanoparticles annealed in different atmospheres. Superlattices Microstruct 52:1171–1177CrossRefGoogle Scholar
  13. 13.
    Singh RPP, Hudiara I, Panday S et al (2016) The effect of Co doping on the structural, optical, and magnetic properties of Fe-doped ZnO nanoparticles. J Supercond Novel Magn 29:819–827CrossRefGoogle Scholar
  14. 14.
    Saleem M, Siddiqi SA, Atiq S et al (2011) Carriers-mediated ferromagnetic enhancement in Al-doped ZnMnO dilute magnetic semiconductors. Mater Charact 62:1102–1107CrossRefGoogle Scholar
  15. 15.
    Luthra V (2014) Tweaking electrical and magnetic properties of Al-Ni co-doped ZnO nanopowders. Ceram Int 40:14927–14932CrossRefGoogle Scholar
  16. 16.
    Wu Z, Cheng K, Zhang F et al (2014) Effect of Al co-doping on the electrical and magnetic properties of Cu-doped ZnO nanorods. J Alloys Compd 615:521–525CrossRefGoogle Scholar
  17. 17.
    Siddheswaran R, Medlin R, Bělský P et al (2014) Heterogeneous phase formation in diluted magnetic semiconducting Zn1−xyCox AlyO (CAZO) nanoparticles. RSC Adv 4:23405–23411CrossRefGoogle Scholar
  18. 18.
    Chang G, Kurmaev E, Boukhvalov D et al (2009) Co and Al co-doping for ferromagnetism in ZnO: Co diluted magnetic semiconductors. J Phys Condens Matter 21:056002CrossRefGoogle Scholar
  19. 19.
    Jannesari M, Asemi M, Ghanaatshoar M (2017) Sol-gel preparation of Fe and Al co-doped ZnO nanostructured materials. J Sol Gel Sci Technol 83:181–189CrossRefGoogle Scholar
  20. 20.
    Liu H, Zhang X, Li L et al (2007) Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl Phys Lett 91:072511CrossRefGoogle Scholar
  21. 21.
    Ramachandran S, Narayan J, Prater J (2006) Effect of oxygen annealing on Mn doped ZnO diluted magnetic semiconductors. Appl Phys Lett 88:242503CrossRefGoogle Scholar
  22. 22.
    Yu CF, Lin TJ, Sun SJ et al (2007) Origin of ferromagnetism in nitrogen embedded ZnO: N thin films. J Phys D Appl Phys 40:6497CrossRefGoogle Scholar
  23. 23.
    Singhal R, Sharma S, Kumari P et al (2011) Study of electronic structure and magnetization correlations in hydrogenated and vacuum annealed Ni doped ZnO. J Appl Phys 109:063907CrossRefGoogle Scholar
  24. 24.
    Su X, Jia Y, Liu X et al (2014) Preparation, dielectric property and infrared emissivity of Fe-doped ZnO powder by coprecipitation method at various reaction time. Ceram Int 40:5307–5311CrossRefGoogle Scholar
  25. 25.
    Hong NH, Sakai J, Huong NT et al (2005) Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys Rev B 72:045336CrossRefGoogle Scholar
  26. 26.
    Kumar S, Kim Y, Koo B et al (2009) Structural and magnetic properties of chemically synthesized Fe doped ZnO. J Appl Phys 105:07C520CrossRefGoogle Scholar
  27. 27.
    Tang G, Shi X, Huo C et al (2013) Room temperature ferromagnetism in hydrothermally grown Ni and Cu co-doped ZnO nanorods. Ceram Int 39:4825–4829CrossRefGoogle Scholar
  28. 28.
    Srinet G, Varshney P, Kumar R et al (2013) Structural, optical and magnetic properties of Zn1−xCoxO prepared by the sol-gel route. Ceram Int 39:6077–6085CrossRefGoogle Scholar
  29. 29.
    Zhong M, Li Y, Tariq M et al (2016) Effect of oxygen vacancy induced by a pulsed magnetic field on the room-temperature ferromagnetic Ni-doped ZnO synthesized by hydrothermal method. J Alloys Compd 675:286–291CrossRefGoogle Scholar
  30. 30.
    Tariq M, Li Y, Li W et al (2018) Ferromagnetic coupling of Fe3+-VO-Fe3+ polarons in Fe-doped ZnO. Ceram Int 44:71–75CrossRefGoogle Scholar
  31. 31.
    Zhu M, Zhang Z, Zhong M et al (2017) Oxygen vacancy induced ferromagnetism in Cu-doped ZnO. Ceram Int 43:3166–3170CrossRefGoogle Scholar
  32. 32.
    Wang S, Bo W, Zhong M et al (2012) Effect of Cr content on the properties of magnetic field processed Cr-doped ZnO-diluted magnetic semiconductors. J Nanomater.
  33. 33.
    Chen GJ, Chang YS (2016) Effects of annealing atmospheres on the structure and ferromagnetic properties of Fe0.12Cu0.02Zn0.86O thin films. Ceram Int 42:18025–18030CrossRefGoogle Scholar
  34. 34.
    Xia C, Hu C, Tian Y et al (2011) Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays. Solid State Sci 13:388–393CrossRefGoogle Scholar
  35. 35.
    Wagner C, Riggs W, Davis L et al (1979) Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie, MNGoogle Scholar
  36. 36.
    Goktas A, Aslan F, Yeşilata B et al (2018) Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films: role of Al doping levels and annealing. Mater Sci Semicond Process 75:221–233CrossRefGoogle Scholar
  37. 37.
    Chen M, Wang X, Yu Y et al (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140CrossRefGoogle Scholar
  38. 38.
    Das J, Pradhan S, Sahu D et al (2010) Micro-Raman and XPS studies of pure ZnO ceramics. Phys B Condens Matter 405:2492–2497CrossRefGoogle Scholar
  39. 39.
    Umar A, Hahn Y (2006) Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation. Appl Phys Lett 88:173120CrossRefGoogle Scholar
  40. 40.
    Khanbareh H, Hegde M, van der Zwaag S et al (2015) Joint IEEE international symposium on the applications of ferroelectric (ISAF). International symposium on integrated functionalities (ISIF), and piezoelectric force microscopy workshop (PFM)Google Scholar
  41. 41.
    Jule L, Dejene F, Ali AG et al (2017) Defect-induced room temperature ferromagnetic properties of the Al-doped and undoped ZnO rod-like nanostructure. Mater Lett 199:151–155CrossRefGoogle Scholar
  42. 42.
    Phan TL, Nghia N, Yu S (2012) Raman scattering spectra and magnetic properties of polycrystalline Zn1−xCoxO ceramics. Solid State Commun 152:2087–2091CrossRefGoogle Scholar
  43. 43.
    Hernández S, Cauda V, Hidalgo D et al (2014) Fast and low-cost synthesis of 1D ZnO-TiO2 core-shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting. J Alloys Compd 615:S530–S537CrossRefGoogle Scholar
  44. 44.
    Asemi M, Ghanaatshoar M (2016) Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram Int 42:6664–6672CrossRefGoogle Scholar
  45. 45.
    Elilarassi R, Chandrasekaran G (2017) Optical, electrical and ferromagnetic studies of ZnO: Fe diluted magnetic semiconductor nanoparticles for spintronic applications. Spectrochim Acta Part A Mol Biomol Spectrosc 186:120–131CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Yang Y, Zheng J et al (2009) Thermal properties of glass frit and effects on Si solar cells. Mater Chem Phys 114:319–322CrossRefGoogle Scholar
  47. 47.
    Bhat SV, Deepak F (2005) Tuning the bandgap of ZnO by substitution with Mn2+, Co2+, and Ni2+. Solid State Commun 135:345–347CrossRefGoogle Scholar
  48. 48.
    Dong S, Xu K, Liu J et al (2011) Photocatalytic performance of ZnO: Fe array films under sunlight irradiation. Phys B Condens Matter 406:3609–3612CrossRefGoogle Scholar
  49. 49.
    Panigrahy B, Aslam M, Bahadur D (2012) Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanotechnology 23:115601CrossRefGoogle Scholar
  50. 50.
    Si X, Liu Y, Wu X et al (2015) Al-Mg co-doping effect on optical and magnetic properties of ZnO nanopowders. Phys Lett A 379:1445–1448CrossRefGoogle Scholar
  51. 51.
    Santara B, Giri P, Dhara S et al (2014) Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J Phys D Appl Phys 47:235304CrossRefGoogle Scholar
  52. 52.
    Das J, Mishra D, Sahu D et al (2011) Influence of Ni doping on magnetic behavior of Mn doped ZnO. Mater Lett 65:598–601CrossRefGoogle Scholar
  53. 53.
    Coey J, Venkatesan M, Fitzgerald C (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Tariq
    • 1
  • Ying Li
    • 1
    Email author
  • Wen-Xian Li
    • 1
  • Zhong-Rui Yu
    • 1
  • Jia-Mei Li
    • 1
  • Ye-Min Hu
    • 1
  • Ming-Yuan Zhu
    • 1
  • Hong-Ming Jin
    • 1
  • Yang Liu
    • 1
  • Yi-Bing Li
    • 2
  • Katerina Skotnicova
    • 3
  1. 1.School of Materials Science and Engineering/Institute for Sustainable Energy/Institute of MateiralsShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.School of ChemistryThe University of New South WalesSydneyAustralia
  3. 3.Faculty of Metallurgy and Materials EngineeringVŠB–Technical University of OstravaOstravaCzech Republic

Personalised recommendations