International Journal of Dynamics and Control

, Volume 7, Issue 4, pp 1404–1418 | Cite as

Adaptive hybrid complex projective combination–combination synchronization in non-identical hyperchaotic complex systems

  • Ayub Khan
  • Uzma NigarEmail author


In this paper, we propose an adaptive hybrid complex projective combination–combination synchronization method to synchronize the hyperchaotic (HC) complex Lorenz system and HC complex Lu system. The adaptive control laws and parameter update laws are derived from making the state of HC complex systems asymptotically stable by using Lyapunov stability theory. During these studies, the coupled HC complex systems (master and slave systems) evolve in a distinct direction with a constant intersection phase angle. Numerical simulations are performed to illustrate the validity and effectiveness of the proposed scheme using MATLAB.


Hyperchaotic complex Lorenz system Hyperchaotic complex Lu system Hybrid complex projective combination–combination synchronization Adaptive control Lyapunov stability theory 


  1. 1.
    Sahoo B, Poria S (2014) The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fractals 58:52–64MathSciNetzbMATHGoogle Scholar
  2. 2.
    Guo-Cheng W, Baleanu D, Lin Z-X (2016) Image encryption technique based on fractional chaotic time series. J Vib Control 22(8):2092–2099MathSciNetGoogle Scholar
  3. 3.
    Li Z, Daolin X (2004) A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22(2):477–481zbMATHGoogle Scholar
  4. 4.
    Patle BK, Parhi DRK, Jagadeesh A, Kashyap SK (2018) Matrix-binary codes based genetic algorithm for path planning of mobile robot. Comput Electr Eng 67:708–728Google Scholar
  5. 5.
    Das S, Pan I (2011) Fractional order signal processing: introductory concepts and applications. Springer, BerlinzbMATHGoogle Scholar
  6. 6.
    Han SK, Kurrer C, Kuramoto Y (1995) Dephasing and bursting in coupled neural oscillators. Phys Rev Lett 75(17):3190Google Scholar
  7. 7.
    Bouallegue K (2017) A new class of neural networks and its applications. Neurocomputing 249:28–47Google Scholar
  8. 8.
    Tong X-J, Zhang M, Wang Z, Liu Y, Ma J (2015) An image encryption scheme based on a new hyperchaotic finance system. Optik 126(20):2445–2452Google Scholar
  9. 9.
    Poincaré H (1890) Sur le problème des trois corps et les équations de la dynamique. Acta Math 13(1):A3–A270MathSciNetGoogle Scholar
  10. 10.
    Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141zbMATHGoogle Scholar
  11. 11.
    Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bhalekar S (2014) Synchronization of non-identical fractional order hyperchaotic systems using active control. World J Model Simul 10(1):60–68Google Scholar
  13. 13.
    Khan A, Bhat MA (2017) Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system. Int J Dyn Control 5(4):1211–1221MathSciNetGoogle Scholar
  14. 14.
    Chen M, Han Z (2003) Controlling and synchronizing chaotic genesio system via nonlinear feedback control. Chaos Solitons Fractals 17(4):709–716MathSciNetzbMATHGoogle Scholar
  15. 15.
    Singh S, Azar AT, Ouannas A, Zhu, Q, Zhang W, Na J (2017) Sliding mode control technique for multi-switching synchronization of chaotic systems. In: 2017 9th International conference on modelling, identification and control (ICMIC), pp 880–885. IEEEGoogle Scholar
  16. 16.
    Khan A, Tyagi A (2017) Analysis and hyper-chaos control of a new 4-d hyper-chaotic system by using optimal and adaptive control design. Int J Dyn Control 5(4):1147–1155MathSciNetGoogle Scholar
  17. 17.
    Khan A, Singh S (2018) Generalization of combination-combination synchronization of n-dimensional time-delay chaotic system via robust adaptive sliding mode control. Math Methods Appl Sci 41(9):3356–3369MathSciNetzbMATHGoogle Scholar
  18. 18.
    Li D, Zhang X (2016) Impulsive synchronization of fractional order chaotic systems with time-delay. Neurocomputing 216:39–44Google Scholar
  19. 19.
    Rossler OE (1979) An equation for hyperchaos. Phys Lett A 71(2–3):155–157MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fowler AC, Gibbon JD, McGuinness MJ (1982) The complex lorenz equations. Physica D 4(2):139–163MathSciNetzbMATHGoogle Scholar
  21. 21.
    Singh AK, Yadav VK, Das S (2017) Synchronization between fractional order complex chaotic systems. Int J Dyn Control 5(3):756–770MathSciNetGoogle Scholar
  22. 22.
    Li G-H, Zhou S-P (2007) Anti-synchronization in different chaotic systems. Chaos Solitons Fractals 32(2):516–520Google Scholar
  23. 23.
    Ding Z, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Networks 76:97–105zbMATHGoogle Scholar
  24. 24.
    Vaidyanathan S (2016) Hybrid synchronization of the generalized lotka–volterra three-species biological systems via adaptive control. Int J PharmTech Res 9(1):179–192MathSciNetGoogle Scholar
  25. 25.
    Khan A, Tyagi A (2018) Fractional order disturbance observer based adaptive sliding mode hybrid projective synchronization of fractional order newton-leipnik chaotic system. Int J Dyn Control 6(3):1136–1149MathSciNetGoogle Scholar
  26. 26.
    Delavari H, Mohadeszadeh M (2018) Hybrid complex projective synchronization of complex chaotic systems using active control technique with nonlinearity in the control input. J Control Eng Appl Inform 20(1):67–74Google Scholar
  27. 27.
    Suresh R, Senthilkumar DV, Lakshmanan M, Kurths J (2010) Global phase synchronization in an array of time-delay systems. Phys Rev E 82(1):016215Google Scholar
  28. 28.
    Runzi L, Yinglan W, Shucheng D (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos Interdiscip J Nonlinear Sci 21(4):043114zbMATHGoogle Scholar
  29. 29.
    Prajapati N, Khan A, Khattar D (2018) On multi switching compound synchronization of non identical chaotic systems. Chin J Phys 56(4):1656–1666MathSciNetGoogle Scholar
  30. 30.
    Ojo KS, Njah AN, Olusola OI (2015) Compound–combination synchronization of chaos in identical and different orders chaotic systems. Arch Control Sci 25(4):463–490MathSciNetGoogle Scholar
  31. 31.
    Sun J, Shen Y, Wang X, Chen J (2014) Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn 76(1):383–397MathSciNetzbMATHGoogle Scholar
  32. 32.
    Khan A et al (2018) Chaotic analysis and combination-combination synchronization of a novel hyperchaotic system without any equilibria. Chin J Phys 56(1):238–251MathSciNetGoogle Scholar
  33. 33.
    Hubler AW (1989) Adaptive control of chaotic system. Helv Phys Acta 62:343–346Google Scholar
  34. 34.
    Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 82(15):3042Google Scholar
  35. 35.
    Xiang-Jun W, Wang H, Hong-Tao L (2011) Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal Real World Appl 12(2):1288–1299MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang X, Zhang X, Ma C (2012) Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn 69(1–2):511–517MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hamel S, Boulkroune A (2016) A generalized function projective synchronization scheme for uncertain chaotic systems subject to input nonlinearities. Int J Gen Syst 45(6):689–710MathSciNetzbMATHGoogle Scholar
  38. 38.
    Vaidyanathan S, Azar AT (2016) Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In: Advances in chaos theory and intelligent control, pp 275–296. SpringerGoogle Scholar
  39. 39.
    Fang-Fang Z, Shu-Tang L, Wei-Yong Y (2013) Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos. Chin Phys B 22(12):120505Google Scholar
  40. 40.
    Mahmoud GM, Mahmoud EE (2013) Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dyn 73(4):2231–2240MathSciNetzbMATHGoogle Scholar
  41. 41.
    Wei Q, Wang X, Xiao-peng H (2014) Adaptive hybrid complex projective synchronization of chaotic complex system. Trans Inst Measur Control 36(8):1093–1097Google Scholar
  42. 42.
    Sun J, Cui G, Wang Y, Shen Y (2015) Combination complex synchronization of three chaotic complex systems. Nonlinear Dyn 79(2):953–965MathSciNetzbMATHGoogle Scholar
  43. 43.
    Liu J, Liu S (2017) Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters. Appl Math Model 48:440–450MathSciNetGoogle Scholar
  44. 44.
    Sun J, Shen Y, Zhang G, Chengjie X, Cui G (2013) Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn 73(3):1211–1222MathSciNetzbMATHGoogle Scholar
  45. 45.
    Li X-F, Leung AC-S, Han X-P, Liu X-J, Chu Y-D (2011) Complete (anti-) synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn 63(1–2):263–275MathSciNetzbMATHGoogle Scholar
  46. 46.
    Mahmoud GM, Ahmed ME, Mahmoud EE (2008) Analysis of hyperchaotic complex lorenz systems. Int J Mod Phys C 19(10):1477–1494zbMATHGoogle Scholar
  47. 47.
    Wang S, Wang X, Zhou Y, Han B (2016) A memristor-based hyperchaotic complex lü system and its adaptive complex generalized synchronization. Entropy 18(2):58Google Scholar
  48. 48.
    Khan A, Bhat MA (2017) Multi-switching combination-combination synchronization of non-identical fractional-order chaotic systems. Math Methods Appl Sci 40(15):5654–5667MathSciNetzbMATHGoogle Scholar
  49. 49.
    Khan A, Singh S, Azar AT (2019) Combination-combination anti-synchronization of four fractional order identical hyperchaotic systems. In: International conference on advanced machine learning technologies and applications, pp 406–414. Springer (2019)Google Scholar
  50. 50.
    He J, Cai J (2014) Finite-time combination-combination synchronization of hyperchaotic systems and its application in secure communication. Phys Sci Int J 4(10):1326Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations