Advertisement

International Journal of Dynamics and Control

, Volume 7, Issue 4, pp 1213–1224 | Cite as

Simplification of a reconstructed model

  • Viktor GorodetskyiEmail author
  • Mykola Osadchuk
Article
  • 13 Downloads

Abstract

We study a mathematical model in the form of a system of ordinary differential equations, with polynomial right-hand sides, obtained with a use of numerical methods. The paper deals with a simplification problem for such a model, since it can contain redundant terms. We propose a method to solve this problem without use of any numerical procedure. We show that the system can be simplified in such a way that the observed variable would not change. The simplification aims at reducing the number of nonzero coefficients in the right-hand side of the system. For this purpose, we use relations that connect a non-simplified model with a so-called differential model. The latter should be the same for all systems that have the same observable. This fact allows us to obtain a simplified system. The suggested approach, in general, permits to obtain several minimized systems that have identical time series for the observed variable. The researcher then can choose the system that better suits the physical process under consideration.

Keywords

Time series Model simplification Analytical method Original system Differential model 

References

  1. 1.
    Aguirre LA, Letellier C (2009) Modeling nonlinear dynamics and chaos: a review. Math Prob Eng 2009:238960MathSciNetCrossRefGoogle Scholar
  2. 2.
    Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  3. 3.
    Cremers J, Hübler A (1987) Construction of differential equations from experimental data. Naturforsch 42(a):797–802MathSciNetGoogle Scholar
  4. 4.
    Breeden JL, Hübler A (1990) Reconstructing equations of motion from experimental data with unobserved variables. Phys Rev A 42:5817–5826MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mangiarotti S, Coudret R, Drapeau L, Jarlan L (2012) Polynomial search and global modeling: two algorithms for modeling chaos. Phys Rev E 86:046205CrossRefGoogle Scholar
  6. 6.
    Mangiarotti S, Peyre M, Huc M (2016) A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–2016). Chaos 26:113112MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aguirre LA (1994) Some remarks on structure selection for nonlinear models. Int J Bifurc Chaos 4:1707–1714CrossRefGoogle Scholar
  8. 8.
    Tong H (1992) Some comments on a bridge between nonlinear dynamicists and statisticians. Physica D 58:299–303MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aguirre LA, Billings SA (1995) Dynamical effects of overparametrization in nonlinear models. Physica D 80:26–40CrossRefGoogle Scholar
  10. 10.
    Baake E, Baake M, Bock HG, Briggs KM (1992) Fitting ordinary differential equations to chaotic data. Phys Rev A 45:5524–5529CrossRefGoogle Scholar
  11. 11.
    Gouesbet G (1991) Reconstruction of standard and inverse vector fields equivalent to the Rössler system. Phys Rev A 44:6264–6280MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  13. 13.
    Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398CrossRefGoogle Scholar
  14. 14.
    Sprott J (1994) Some simple chaotic flows. Phys Rev E 50(2):R647–R650MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jafari S, Sprott J, Golpayegani SMRH (2013) Elementary quadratic chaotic flows with no equilibria. Phys Lett A 377:699–702MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jafari S, Sprott J (2013) Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57:79–84MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kadtke JB, Brush J, Holzfuss J (1993) Global dynamical equations and Lyapunov exponents from noisy chaotic time series. Int J Bifurc Chaos 3(3):607–616MathSciNetCrossRefGoogle Scholar
  18. 18.
    Brown R, Rulkov NF, Tracy ER (1994) Modeling and synchronizing chaotic systems from time-series data. Phys Rev E 49(5):3784–3800CrossRefGoogle Scholar
  19. 19.
    Judd K, Mees A (1995) On selecting models for nonlinear time series. Physica D 82(4):426–444CrossRefGoogle Scholar
  20. 20.
    Billings SA, Chen S, Korenberg MJ (1989) Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int J Control 49(6):2157–2189MathSciNetCrossRefGoogle Scholar
  21. 21.
    Aguirre LA, Billings SA (1995) Identification of models for chaotic systems from noisy data: implications for performance and nonlinear filtering. Physica D 85(1–2):239–258CrossRefGoogle Scholar
  22. 22.
    Gouesbet G (1991) Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series. Phys Rev A 43:5321–5331MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lainscsek C (2012) A class of Lorenz-like systems. Chaos 22:013126MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gorodetskyi V, Osadchuk M (2013) Analytic reconstruction of some dynamical systems. Phys Lett A 377:703–713MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lainscsek C (2011) Nonuniqueness of global modeling and time scaling. Phys Rev E 84:046205CrossRefGoogle Scholar
  26. 26.
    Lainscsek C, Letellier C, Schürrer F (2001) Ansatz library for global modeling with a structure selection. Phys Rev E 64(016206):1–15Google Scholar
  27. 27.
    Lainscsek C, Letellier C, Gorodnitsky I (2003) Global modeling of the Rössler system from the \(z\)-variable. Phys Lett A 314:409–427MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations