Advertisement

Biomechanics, actuation, and multi-level control strategies of power-augmentation lower extremity exoskeletons: an overview

  • Hayder F. N. Al-ShukaEmail author
  • Mohammad H. Rahman
  • Steffen Leonhardt
  • Ileana Ciobanu
  • Mihai Berteanu
Article
  • 5 Downloads

Abstract

Improper manipulation of heavy objects can result in hard stresses (tension, compression and shear) throughout the human body parts, especially in the low-back spine. Biomechanics specialists state that injuries that occur in this area may address muscle tissue, joint tissues and intervertebral disc tissues. The effect of a carried load on kinematics and kinetics of body’s lower extremity is significant. Besides of labor protection rules and interventions designed to reduce and avoid injuries, powered wearable exoskeletons have been proposed to amplify human capabilities. The paper regards three significant issues related to exoskeletons: biomechanical modeling, actuation, and multi-level control strategies. Three modalities to get optimal performance of wearable robots are hereby summarized: (i) minimization of interaction force wrench by using direct/indirect force control strategies, (ii) modification of reference trajectory to compensate for unwanted interaction force wrench, and (iii) adding the power assist rate such that zero impedance at interaction attachments is guaranteed. To accomplish these points, most proposed control strategies consist of three levels of control: high-level control, responsible for capturing human movement intention; mid-level control for regulation of divisions of the gait cycle; and low-level control for stabilization of the coupled motion.

Keywords

Human walking intention Lower extremity exoskeleton Biomechanics Impedance control Biped locomotion 

Notes

Acknowledgements

This work was supported by the Postdoctoral Fellowship of Shandong University, School of Control Science and Engineering, China, and the COST Action CA 16116—Wearable Robots for Augmentation, Assistance or Substitution of Human Motor Functions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Li Z, Xie H, Li W, Yao Z (2014) Proceeding of human exoskeleton technology and discussions on future research. Chin J Mech Eng 27:437–447.  https://doi.org/10.3901/CJME.2014.03.437 CrossRefGoogle Scholar
  2. 2.
    Walsh J (2006) Biomimetic design of an under-actuated leg exoskeleton for load-carrying augmentation. M.S. Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  3. 3.
    Walsh J, Pasch K, Herr H (2006) An autonomous, underactuated exoskeleton for load-carrying augmentation. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1410–1415Google Scholar
  4. 4.
    Walsh J, Paluska D, Pasch K, Grand W, Valiente A, Herr H (2006) Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In: IEEE international conference on robotics and automation (ICRA), Florida, USA, pp 3485–3491Google Scholar
  5. 5.
    Walsh J, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Hum Robot 04:487–506CrossRefGoogle Scholar
  6. 6.
    Kazerooni H, Steger R (2005) The Bekeley lower extremity exoskeleton. J Dyn Syst Meas Control 128:14–25CrossRefGoogle Scholar
  7. 7.
    Pratt E, Krupp T, Morse J, Collins H (2004) The RoboKnee: an exoskeleton for enhancing strength and durance during walking. In: 2004 IEEE international conference on robotics and automation, ICRA’04, vol 3, pp 2430–2435Google Scholar
  8. 8.
    Lenzi T, Carrozza MC, Agrawal SK (2013) Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans Neural Syst Rehabil Eng 21:938–948CrossRefGoogle Scholar
  9. 9.
    Racine J-LC (2003) Control of a lower extremity exoskeleton for human performance amplification. PhD Dissertation, University of California, BerkeleyGoogle Scholar
  10. 10.
    Yagin N (1890) Apparatus for facilitating walking. U.S. PatentGoogle Scholar
  11. 11.
    Kelley CL (1919) Pedomotor. U.S. PatentGoogle Scholar
  12. 12.
    Mizen NJ (1978) Preliminary design of a full-scale, wearable, exoskeletal structure. Final report, Cornell Aeronautical Laboratory, incGoogle Scholar
  13. 13.
    Mizen, NJ (1964) Design and test of a full-scale, wearable, exoskeletal structure. Interim Technical ReportGoogle Scholar
  14. 14.
    Mosher RS (1960) Force-reflecting electrohydraulic manipulator. Electro-TechnologyGoogle Scholar
  15. 15.
    Makinson JB (1971) Research and development prototype for machine augmentation of human strength and endurance: Hardiman I project. General Electric Report S-71-1056, Schenectady, NYGoogle Scholar
  16. 16.
    Yang Z, Gu W, Zhang J, Gui L (2017) Force control theory and method of human load carrying exoskeleton suit. Springer, National Defense Industry Press, BerlinCrossRefGoogle Scholar
  17. 17.
    Rosheim M (1994) Robot evolution: the development of anthrobotics, 1st edn. Wiley-Interscience, New YorkGoogle Scholar
  18. 18.
    Hristic D, Vukobratovic M (1973) Development of active aids for handicapped. In: Proceedings of the III international conference on bio-medical engineering, Sorrento, ItalyGoogle Scholar
  19. 19.
    Vukobratovic M, Ciric V, Hristic D (1972) Contribution to the study of active exoskeletons. In: Proceedings of the 5th IFAC congress, Paris, vol 5, pp 88–96Google Scholar
  20. 20.
    Vukobratovic M (2007) When were active exoskeletons actually born. Int J Hum Robot 04:459CrossRefGoogle Scholar
  21. 21.
    Al-Shuka HFN, Corves B, Zhu W-H, Vanderborght B (2016) Multi-level control of zero-moment point-based humanoid biped robots: a review. Robotica 34:2440–2466CrossRefGoogle Scholar
  22. 22.
    Al-Shuka HFN (2014) Modeling, walking pattern generators and adaptive control of biped robot. PhD Dissertation, RWTH Aachen University, GermanyGoogle Scholar
  23. 23.
    Al-Shuka HFN, Allmendinger F, Corves B, Zhu W-H (2014) Modeling, stability and walking pattern generators of biped robots: a review. Robotica 32:907–934CrossRefGoogle Scholar
  24. 24.
    Al-Shuka HFN, Corves B, Vanderborght B, Zhu W-H (2015) Zero-moment point-based biped robot with different walking patterns. Int J Intell Syst Appl 01:31–41Google Scholar
  25. 25.
    Al-Shuka HFN, Corves B (2013) On the walking pattern generators of biped robot. J Autom Control Eng 1:149–155CrossRefGoogle Scholar
  26. 26.
    Al-Shuka HFN, Corves B, Zhu W-H, Vanderborght B (2014) A simple algorithm for generating stable biped walking patterns. Int J Comput Appl 101:29–33Google Scholar
  27. 27.
    Al-Shuka HFN, Corves B, Zhu W-H (2014) Function approximation technique-based adaptive virtual decomposition control for a serial-chain manipulator. Robotica 32:375–399CrossRefGoogle Scholar
  28. 28.
    Al-Shuka HFN (2018) On local approximation-based adaptive control with applications to robotic manipulators and biped robots. Int J Dyn Control 6:339–353.  https://doi.org/10.1007/s40435-016-0302-6 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Al-Shuka HFN, Corves B, Zhu W-H (2014) Dynamic modeling dynamic modeling of biped robot using lagrangian and recursive newton-euler formulations. Int J Comput Appl 101:1–8Google Scholar
  30. 30.
    Al-Shuka HFN, Corves B, Zhu W-H (2013) On the dynamic optimization of biped robot. Lect Notes Softw Eng 1:237–243CrossRefGoogle Scholar
  31. 31.
    Sankai Y (2010) HAL: hybrid assistive limb based on cybernics. In: Proceedings of the robotics research 13th international symposium, pp 25–34Google Scholar
  32. 32.
    Suzuki K, Kawamura Y, Hayashi T, Sakurai T, Hasegawa Y, Sankai Y (2005) Intention-based walking support for paraplegia patient. IEEE Int Conf Syst Man Cybernet 3:2707–2713Google Scholar
  33. 33.
    Toda H, Kobayakawa T, Sankai Y (2006) A multi-link system control strategy based biologilcal movement. Adv Robot 20:661–679CrossRefGoogle Scholar
  34. 34.
    Toda H, Sankai Y (2006) Three-dimensional link dynamics simulator base on n-single-particle movement. Adv Robot 19:977–993CrossRefGoogle Scholar
  35. 35.
    Kawamoto H, Sankai Y (2005) Power assist method based on phase sequence and muscle force condition for HAL. Adv Robot 19:717–734CrossRefGoogle Scholar
  36. 36.
    Lee S, Sankai Y (2005) Virtual impedance adjustment in unconstrained motion for exoskeletal robot assisting lower limb. Adv Robot 19:773–795CrossRefGoogle Scholar
  37. 37.
    Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with robot suit hal. Adv Robot 21:1441–1469Google Scholar
  38. 38.
    Kawamoto CH, Sankai Y (2002) Comfortable power assist control method for walking aid by hal-3. In: IEEE international conference on systems, man and cybernetics, vol 4Google Scholar
  39. 39.
    Chu A, Kazerooni H, Zoss A (2005) On the biomimetic design of the Berkeley lower extremity exoskeleton (bleex). In: IEEE international conference on robotics and automation, April, Barcelona, pp 4345–4352Google Scholar
  40. 40.
    Kazerooni H, Racine, JL, Huang L, Steger R (2005) On the control of the Berkeley lower extremity exoskeleton (bleex). In: IEEE international conference on robotics and automation, Barcelona, pp 4353–4360Google Scholar
  41. 41.
    Zoss A, Kazerooni H (2005) On the mechanical design of the Berkeley lower extremity exoskeleton. In: IEEE intelligent robots and systems conference, pp 3465–3472Google Scholar
  42. 42.
    Zhang C, Zang X, Leng Z, Yu H, Zhao J, Zhu Y (2016) Human–machine force interaction design and control for the HIT load-carrying exoskeleton. Adv Mech Eng 8:1–14Google Scholar
  43. 43.
    Jiménez-Fabián R, Verlinden O (2011) Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys 34:397–408CrossRefGoogle Scholar
  44. 44.
    Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot 2011:759764.  https://doi.org/10.1155/2011/759764 Google Scholar
  45. 45.
    Anam K, Al-Jumaily A (2012) Active exoskeleton control systems: state of the art. International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012). Procedia Eng 41:988–994CrossRefGoogle Scholar
  46. 46.
    Yan T, Cempini M, Oddo CM, Vitiello N (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136.  https://doi.org/10.1016/j.robot.2014.09.032 CrossRefGoogle Scholar
  47. 47.
    Chen B et al (2016) Recent developments and challenges of lower extremity exoskeletons. J Orthop Transl 5:26–37Google Scholar
  48. 48.
    Li N et al (2015) Review on lower extremity exoskeleton robot. Open Autom Control Syst J 7:441–453Google Scholar
  49. 49.
    Rupal B et al (2017) Lower-limb exoskeletons: research trends and regulatory guidelines in medical and non-medical applications. Int J Adv Robot Syst.  https://doi.org/10.1177/1729881417743554 Google Scholar
  50. 50.
    Whittle M (2006) An introduction to gait cycle, 4th edn. Butterworth-Heinemann, EdinburghGoogle Scholar
  51. 51.
    Neumann DA (2009) Kinesiology of the musculoskeletal system: foundations for physical rehabilitation, 2nd edn. Mosby, New YorkGoogle Scholar
  52. 52.
    Kiguchi K, Imada Y (2009) EMG-based control of a lower-limb power-assist robot. In: 2009 IEEE workshop on robotic intelligence in informationally structured space, pp 19–24Google Scholar
  53. 53.
    Martinez-Villalpando EC, Herr H (2009) Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev 46:361–373CrossRefGoogle Scholar
  54. 54.
    Shamaei K, Cenciarini M, Dollar AM (2001) On the mechanics of the ankle in the stance phase of the gait. In: 33rd annual international conference of the IEEE EMBS Boston, Massachusetts USA, pp 8135–8140Google Scholar
  55. 55.
    Kim H-G, Lee J-W, Jang J, Park S, Han C (2015) Design of an exoskeleton with minimized energy consumption based on using elastic and dissipative elements. Int J Control Autom Syst 13:463–474CrossRefGoogle Scholar
  56. 56.
    Attwells RL, Birrell SA, Hooper RH, Mansfield NJ (2006) Influence of carrying heavy loads on soldiers’ posture, movements and gait. Ergonomics 49:1527–1537CrossRefGoogle Scholar
  57. 57.
    Bobet J, Norman RW (1984) Effects of load placement on back muscle activity in load carriage. Eur J Appl Physiol 53:71–75CrossRefGoogle Scholar
  58. 58.
    Schulze C, Lindner T, Schulz K, Woitge S, Mittelmeier W, Bader R (2012) Influence of increased load wearing on human posture and muscle activation of trunk and lower limb. Swiss Med Wkly 142:4–5Google Scholar
  59. 59.
    Knapik J, Harman E, Reynolds K (1996) Load carriage using packs: a review of physiological, biomechanical and medical aspects. Appl Ergon 27:207–216CrossRefGoogle Scholar
  60. 60.
    Lindner T, Schulze C, Woitge S, Finze S, Mittelmeier W, Bader R (2012) The effect of the weight of equipment on muscle activity of the lower extremity in soldiers. Sci World J 2012:976513.  https://doi.org/10.1100/2012/976513 CrossRefGoogle Scholar
  61. 61.
    Vanderborght B et al (2013) Variable impedance actuators: a review. Robot Autonom Syst 61:1601–1614CrossRefGoogle Scholar
  62. 62.
    Li Z, Huang Z, He W, Su CY (2017) Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans Ind Electron 64:1664–1674CrossRefGoogle Scholar
  63. 63.
    Lawrence DA (1988) Impedance control stability properties in common implementations. In: IEEE international conference on robotics and automation, vol 2, pp 1185–1190Google Scholar
  64. 64.
    Ali M (2011) Impedance control of redundant manipulators. PhD Dissertation, Tampere University of Technology, FinlandGoogle Scholar
  65. 65.
    Ott C (2008) Cartesian impedance control of redundant and flexible-joint robots. Springer Tracts in Advanced RoboticsGoogle Scholar
  66. 66.
    Dietrich A (2016) Whole-body impedance control of wheeled humanoid robots. Springer Tracts in Advanced RoboticsGoogle Scholar
  67. 67.
    Huang A-C, Chien M-C (2010) Adaptive control of robot manipulators: a unified regressor-free approach. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  68. 68.
    Al-Shuka H, Leonhardt S, Zhu W-H, Song R, Ding C, Li Y (2018) Active impedance control of bioinspired motion robotic manipulators: an overview. Appl Bion Biomech 2018:8203054.  https://doi.org/10.1155/2018/8203054 Google Scholar
  69. 69.
    Głowiński S, Krzyżyński T (2016) An inverse kinematic algorithm for the human leg. J Theor Appl Mech 54:53–61.  https://doi.org/10.15632/jtam-pl.54.1.53 Google Scholar
  70. 70.
    Zakaria MA, Abdul Majeed APP, Khairuddin IM, Taha Z (2017) Kinematics analysis of a 3dof lower limb exoskeleton for gait rehabilitation: a preliminary investigation. In: Ibrahim F, Cheong J, Usman J, Ahmad M, Razman R, Selvanayagam V (eds) 3rd international conference on movement, health and exercise. MoHE 2016. IFMBE proceedings, vol 58. Springer, SingaporeGoogle Scholar
  71. 71.
    Zhu W-H (2010) Virtual decomposition control: toward hyper degrees of freedom robots. Springer, BerlinCrossRefzbMATHGoogle Scholar
  72. 72.
    Luna CO, Rahman MH, Saad M, Archambault PS, Zhu W-H (2016) Virtual decomposition control of an exoskeleton robot arm. Robotica 34:1587–1609CrossRefGoogle Scholar
  73. 73.
    Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A (2007) Active-impedance control of a lower-limb assistive exoskeleton. In: 10th IEEE international conference on rehabilitation robotics, pp 188–195Google Scholar
  74. 74.
    Huo W, Huo Mohammed S, Amirat Y (2015) Observer-based active impedance control of a knee-joint assistive orthosis. In: IEEE international conference on rehabilitation robotics (ICORR), pp 313–318Google Scholar
  75. 75.
    Gregg RD, Lenzi T, Hargrove LJ, Sensinger JW (2014) Virtual constraint control of a powered prosthetic leg: from simulation to experiments with transfemoral amputees. IEEE Trans Robot 30:1455–1471CrossRefGoogle Scholar
  76. 76.
    Lv G, Zhu H, Elery T, Li L, Gregg RD (2016) Experimental implementation of underactuated potential energy shaping on a powered ankle-foot orthosis. In: IEEE international conference on robotics and automation, pp 3493–3500Google Scholar
  77. 77.
    Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B (2007) Feedback control of dynamic bipedal robot locomotion. CRC, New YorkCrossRefGoogle Scholar
  78. 78.
    Sreenath K, Park H-W, Poulakakis I, Grizzle JW (2011) A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int J Robot Res 30:1170–1193CrossRefGoogle Scholar
  79. 79.
    Kolathaya S, Ames AD (2012) Achieving bipedal locomotion on rough terrain through human-inspired control. In: IEEE international symposium on safety security rescue robot, College Station, TX, USA, pp 1–6Google Scholar
  80. 80.
    Martin A, Post D, Schmiedeler J (2014) Design and experimental implementation of a hybrid zero dynamics controller for planar bipeds with curved feet. Int J Robot Res 33:988–1005CrossRefGoogle Scholar
  81. 81.
    Ramezani A, Hurst JW, Hamed KA, Grizzle JW (2013) Performance analysis and feedback control of ATRIAS, a 3D bipedal robot. ASME J Dyn Syst Meas Control 136:021012CrossRefGoogle Scholar
  82. 82.
    Boaventura T, Buchli J, Semini C, Caldwell D (2015) Model-based hydraulic impedance control for dynamic robots. IEEE Trans Robot 31:1324–1336CrossRefGoogle Scholar
  83. 83.
    Best CM (2016) Position and stiffness control of inflatable robotic links using rotary pneumatic actuation. MSc Dissertation, Brigham Young University, USAGoogle Scholar
  84. 84.
    Vallery H et al (2008) Compliant actuation of rehabilitation robots: benefits and limitations of series elastic actuators. IEEE Robot Autom Mag 15:60–69CrossRefGoogle Scholar
  85. 85.
    Rashidi A, Zibafar A, Khezrian R, Vossoughi G (2015) Design and performance analysis of a transparent force control strategy for an exoskeleton. In: 3rd RSI international conference on robotics and mechatronics (ICROM), pp 563–568Google Scholar
  86. 86.
    Deng X, Shen H, Chen F, Yu Y, Ge Y (2007) Motion information acquisition from human lower limbs for wearable robot. In: International conference on information acquisition, pp 137–142Google Scholar
  87. 87.
    Fontana M et al (2014) The body extender: a full-body exoskeleton for the transport and handling of heavy loads. IEEE Robot Autom Mag 21:34–44CrossRefGoogle Scholar
  88. 88.
    Simone M, Fabio S, Marco F, Massimo B (2011) Body extender: whole body exoskeleton for human power augmentation. In: IEEE international conference on robotics and automation, Shanghai, China, pp 611–616Google Scholar
  89. 89.
    Chu G, Hong J, Jeong D-H, Kim D, Kim S, Jeong S, Choo J (2014) The experiments of wearable robot for carrying heavy-weight objects of shipbuilding works. In: 2014 IEEE international conference on automation science and engineering (CASE), Taipei, Taiwan, pp 978–983Google Scholar
  90. 90.
    The Active Link Co. Ltd. http://activelink.co.jp/15. Accessed 1 Sept 2018
  91. 91.
    Tomoyuki I, Tsuyoshi K, Koichi O, Go S, Reishi O, Hiromichi F (2010) Movement analysis of power-assistive machinery with high strength-amplification. In: Proceeding of SICE annual conference, Taipei, Taiwan, pp 2022–2025Google Scholar
  92. 92.
    Rahman MH, Ouimet TK, Saad M, Kenne JP, Archambault PS (2012) Development of a 4 DoFs exoskeleton robot for passive arm movement assistance. Int J Mechatron Autom 2:34–50CrossRefGoogle Scholar
  93. 93.
    Rahman MH, Luna CO, Saad M, Archambault P (2015) EMG based control of a robotic exoskeleton for shoulder and elbow motion assist. J Autom Control Eng 3:270–276CrossRefGoogle Scholar
  94. 94.
    Winter DA (2009) Biomechanics and motor control of human movement. 4th Edition, John Wiley & Sons, IncGoogle Scholar
  95. 95.
    Sekine M, Gonzalez J, Tames JG, Yu W (2013) Variable impedance control based on impedance estimation model with EMG signals during extension and flexion tasks for a lower limb rehabilitation robotic system. J Nov Physiother 3:178.  https://doi.org/10.4172/2165-7025.1000178 Google Scholar
  96. 96.
    Kim S, Bae J (2014) Development of a lower extremity exoskeleton system for human–robot interaction. In: The 11th international conference on ubiquitous robots and ambient intelligence, pp 132–135Google Scholar
  97. 97.
    Multon F (2013) Sensing human walking: algorithms and techniques for extracting and modeling locomotion. In: Steinicke F, Visell Y, Campos J, Lécuyer A (eds) Human walking in virtual environments. Springer, New YorkGoogle Scholar
  98. 98.
    Olivier AH, Crétual A (2007) Velocity/curvature relations along a single turn in human locomotion. Neurosci Lett 412:148–153CrossRefGoogle Scholar
  99. 99.
    Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various tasks in humans. II. Patients with bilateral vestibular deficits. Exp Brain Res 85:208–217CrossRefGoogle Scholar
  100. 100.
    Kavanagh J, Barett R, Morrison R (2005) Age-related differences in head and trunk coordination during walking. Hum Mov Sci 24:574–587CrossRefGoogle Scholar
  101. 101.
    Zhang B, Jiang S, Wei D, Marschollek M, Zhang W (2012) State of the art in gait analysis using wearable sensors for healthcare applications. In: IEEE/ACIS 11th international conference on computer and information science, pp 213–218Google Scholar
  102. 102.
    Chen X (2013) Human motion analysis with wearable inertial sensors. PhD Dissertation, University of Tennessee, USAGoogle Scholar
  103. 103.
    Chinmilli P, Redkar S, Zhang W, Sugar T (2017) A Review on wearable inertial tracking based human gait analysis and control strategies of lower-limb exoskeletons. Int Robit Autom J 3:00080.  https://doi.org/10.15406/iratj.2017.03.00080 Google Scholar
  104. 104.
    Glowinski S, Blazejewski A, Krzyzynski T (2017) Human gait feature detection using inertial sensors wavelets. In: González-Vargas J, Ibáñez J, Contreras-Vidal J, van der Kooij H, Pons J (eds) Wearable robotics: challenges and trends. Biosystems & biorobotics, vol 16. Springer, ChamGoogle Scholar
  105. 105.
    Sprager S, Juric MB (2015) Inertial sensor-based gait recognition: a review. Sensors 15:22089–22127CrossRefGoogle Scholar
  106. 106.
    Byun S et al (2018) Gait variability can predict the risk of cognitive decline in cognitively normal older people. Dement Geriatr Cogn Disord 45(5–6):251–261.  https://doi.org/10.1159/000489927 CrossRefGoogle Scholar
  107. 107.
    Seel T, Schauer T, Raisch J (2014) IMU-based joint angle measurement for gait analysis. Sensors 14:6891–6909.  https://doi.org/10.3390/s140406891 CrossRefGoogle Scholar
  108. 108.
    Ben Mansour K, Rezzoug N, Gorce P (2015) Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Gait Posture 42:409–414.  https://doi.org/10.1016/j.gaitpost.2015.05.020 CrossRefGoogle Scholar
  109. 109.
    Caldas R et al (2017) A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture 57:204–210.  https://doi.org/10.1016/j.gaitpost.2017.06.019 CrossRefGoogle Scholar
  110. 110.
    Totaro M et al (2017) Soft smart garments for lower limb joint position analysis. Sensors (Basel) 17(10):2314.  https://doi.org/10.3390/s17102314 CrossRefGoogle Scholar
  111. 111.
    Cifuentes CA, Frizera A (2016) Human–robot interaction strategies for walker-assisted locomotion. Springer, BerlinCrossRefGoogle Scholar
  112. 112.
    Taborri J, Palermo E, Rossi S, Cappa P (2016) Gait partitioning methods: a systematic review. Sensors 16:66.  https://doi.org/10.3390/s16010066 CrossRefGoogle Scholar
  113. 113.
    Siciliano B, Villani L (1999) Robot force control. The Springer International Series in Engineering and Computer ScienceGoogle Scholar
  114. 114.
    Duong MK, Cheng H, Toan HT, Jing Q (2016) Minimizing human–exoskeleton interaction force using compensation for dynamic uncertainty error with adaptive rbf network. J Intell Robot Syst 82:413–433CrossRefGoogle Scholar
  115. 115.
    Zanotto D, Lenzi T, Stegall P, Agrawal SK (2013) Improving transparency of powered exoskeletons using force/torque sensors on the supporting cuffs. In: IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6Google Scholar
  116. 116.
    Boaventura T, Hammer L, Buchli J (2016) Interaction force estimation for transparency control on wearable robots using a Kalman filter. Converging clinical and engineering research on neurorehabilitation II, pp 489–493Google Scholar
  117. 117.
    Tsuji T, Tanaka Y, Kaneko M (2001) Tracking control properties of human–robot systems. In: Proceedings of the 1st international conference on information technology in mechatronics, Istanbul, pp 77–83Google Scholar
  118. 118.
    Yamada Y, Konosu H, Morizono T, Umetani Y (1999) Proposal of skill-assist: a system of assisting human workers by reflecting their skills in positioning tasks. In: Proceedings of the IEEE international conference on systems, man and cybernetics, Tokyo, pp (IV)11–(IV)16Google Scholar
  119. 119.
    Wilkie J, Johnson MA, Katebi R (2001) Control engineering: an introductory course. PalgraveGoogle Scholar
  120. 120.
    Liu X, Low KH, Yu HY (2004) Development of a lower extremity exoskeleton for human performance enhancement. In: Proceedings 01 2004 IEEE/RSJ international conference on intelligent robots and systems, pp 3889–3894Google Scholar
  121. 121.
    Rechy-Ramirez EJ, Hu H (2011) Stages for developing control systems using EMG and EEG signals: a survey. Technical report: CES-513, University of Essex, ISSN 1744-8050Google Scholar
  122. 122.
    Yamamoto K, Ishii M, Hyodo K, Yoshimitsu T, Matsuo T (2003) Development of power assisting suit (miniaturization of supply system to realize wearable suit). JSME Int J Ser C 46:923–930CrossRefGoogle Scholar
  123. 123.
    Yamamoto K, Ishii M, Noborisaka H, Hyodo K (2004) Stand alone wearable power assisting suit-sensing and control systems. In: 3th IEEE international workshop on robot and human interactive communication (IEEE Catalog No. 04TH8759), pp 661–666Google Scholar
  124. 124.
    Lucchesi N et al (2010) An approach to the design of fully actuated body extenders for material handling. In: 19th international symposium in robot and human interactive communication, pp 482–487Google Scholar
  125. 125.
    Kazerooni H, Harding N, Angold R (2006) Lower extremity exoskeleton. International Patent, WO2006/078871A2Google Scholar
  126. 126.
    Kazerooni H, Harding N, Angold R, Amundson K, Burns JW, Zoss A (2010) Wearable material handling system. International Patent, WO2010/101595A1Google Scholar
  127. 127.
    Sarcos R(2010) Control logic for biomimetic joint actuators. International Patent, WO2010/025403A1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hayder F. N. Al-Shuka
    • 1
    Email author
  • Mohammad H. Rahman
    • 2
  • Steffen Leonhardt
    • 3
  • Ileana Ciobanu
    • 4
  • Mihai Berteanu
    • 4
    • 5
  1. 1.School of Control Science and EngineeringShandong UniversityJinanChina
  2. 2.Mechanical/Biomedical Engineering DepartmentUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  3. 3.The Philips Chair for Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany
  4. 4.Rehabilitation Medicine DepartmentElias University HospitalBucharestRomania
  5. 5.Rehabilitation Medicine DepartmentCarol Davila University of MedicineBucharestRomania

Personalised recommendations