Advertisement

Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states

  • Z. T. NjitackeEmail author
  • J. Kengne
  • T. Fonzin Fozin
  • B. P. Leutcha
  • H. B. Fotsin
Article
  • 46 Downloads

Abstract

In this contribution, we investigate the dynamics of a novel model of 4-neurons based Hopfield neural networks. Our analyses highlight complex phenomena such as chaotic and periodic behaviors which have been classified by Panahi et al. (Chaos Solitons Fractals 105:150–156, 2017) as some brain behaviors. More interestingly, it has been revealed several sets of synaptic weights matrix for which the proposed HNNs displays multiple coexisting stable states including two, four and six disjoined orbits. Basins of attraction of coexisting stable states have been computed showing different regions in which each solution can be captured. Beside the presence of coexisting bifurcations, the model displays remerging Feigenbaum trees bifurcations also known as antimonotonicity for some judicious sets of synaptic weights. PSpice investigations are finally used to confirm results of the theoretical investigations.

Keywords

4-Neurons based HNN Antimonotonicity Coexistence of multiple stable states Basin of attraction Pspice simulations 

References

  1. 1.
    Hopfield J (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81:3088–3092CrossRefzbMATHGoogle Scholar
  2. 2.
    Qiu H, Chen X, Liu W, Zhou G, Wang Y, Lai J (2012) A fast l1-solver and its applications to robust face recognition. J Ind Manag Optim 8:163–178MathSciNetzbMATHGoogle Scholar
  3. 3.
    Wang YJ, Zhou GL, Caccetta L, Liu WQ (2011) An alternative Lagrange-dual based algorithm for sparse signal reconstruction. IEEE Trans Signal Process 59:1895–1901CrossRefGoogle Scholar
  4. 4.
    Yang XS, Yuan Q (2005) Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69:232–241CrossRefGoogle Scholar
  5. 5.
    Panahi S, Aram Z, Jafari S, Ma M, Sprott JC (2017) Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 105:150–156MathSciNetCrossRefGoogle Scholar
  6. 6.
    Sprott JC, Wildenberg JC, Vano JA (2005) A simple spatiotemporal chaotic Lotka–Volterra model. Chaos Solitons Fractals 26:1035–1043MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRefGoogle Scholar
  8. 8.
    Izhikevich EM (2004) Which model to use for cortical spiking neurons. IEEE Trans Neuron Netw 15:1063–1070CrossRefGoogle Scholar
  9. 9.
    Izhikevich EM (2007) Systems in neuroscience. MIT Press, CambridgeGoogle Scholar
  10. 10.
    Morris C, Leca H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213CrossRefGoogle Scholar
  11. 11.
    Güçlü U, van Gerven AJ (2017) Modeling the dynamics of human brain activity with recurrent neural networks. Front Comput Neurosci 11(7):1–14Google Scholar
  12. 12.
    Li Q, Yang X (2005) Complex dynamics in a simple Hopfield-type neural network. In: Wang J, Liao X, Yi Z (eds) Advances in neural networks—ISNN 2005. ISNN. Lecture Notes in Computer Science, vol 3496. Springer, Berlin, pp 357–362Google Scholar
  13. 13.
    Zheng P, Tang W, Zang J (2010) Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing 73:2280–2285CrossRefGoogle Scholar
  14. 14.
    Li Q, Tang S, Zeng H, Zhou T (2014) On hyperchaos in a small memristive neural network. Nonlinear Dyn 78:1087–1099CrossRefzbMATHGoogle Scholar
  15. 15.
    Danca MF, Kuznets L (2017) Hidden chaotic sets in a Hopfield neural system. Chaos Solitons Fractals 103:144–150MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bao B, Qian H, Xu Q, Chen M, Wang J, Yu Y (2017) Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front Comput Neurosci 11(81):1–14Google Scholar
  17. 17.
    Bao B, Qian H, Wang J, Xu Q, Chen M, Wu H, Yu Y (2017) Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn.  https://doi.org/10.1007/s11071-017-3808-3 MathSciNetGoogle Scholar
  18. 18.
    Njitacke ZT, Kengne J, Fotsin HB (2018) A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int J Dyn Control.  https://doi.org/10.1007/s40435-018-0435-x Google Scholar
  19. 19.
    Njitacke ZT, Kengne J (2018) Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. Int J Electron Commun (AEÜ) 93:242–252CrossRefGoogle Scholar
  20. 20.
    Kengne J (2016) On the dynamics of Chua’s oscillator with a smooth cubic nonlinearity: occurrence of multiple attractors. Nonlinear Dyn.  https://doi.org/10.1007/s11071-016-3047-z Google Scholar
  21. 21.
    Njitacke ZT, Kengne J, Fotsin HB, Negou AN, Tchiotsop D (2016) Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos Solitons Fractals 91:180–197CrossRefzbMATHGoogle Scholar
  22. 22.
    Kengne J, Njitacke ZT, Negou AN, Fouodji MT, Fotsin HB (2015) Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int J Bifurc Chaos 25(4):1550052CrossRefzbMATHGoogle Scholar
  23. 23.
    Kengne J, Njitacke ZT, Fotins HB (2015) Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn.  https://doi.org/10.1007/s11071-015-2364-y Google Scholar
  24. 24.
    Njitacke ZT, Kengne J, Kamdjeu Kengne L (2017) Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos Solitons Fractals 105:77–91MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kengne J, Njitacke ZT, Fotins HB (2016) Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Commun Nonlinear Sci Numer Simul 36:29–44MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kengne J, Njitacke ZT, Kamdoum VT, Negou AN (2015) Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos Interdiscip J Nonlinear Sci 25:103126MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hilborn RC (1994) Chaos and nonlinear dynamics—an introduction for scientists and engineers. Oxford University Press, OxfordzbMATHGoogle Scholar
  28. 28.
    Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics: analytical, computational and experimental methods. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  29. 29.
    Nik HS, Effati S, Saberi-Nadjafi J (2015) Ultimate bound sets of a hyperchaotic system and its application in chaos synchronization. Complexity 20:30–44MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Chen M, Xu Q, Lin Y, Bao BC (2017) Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn 87:789–802CrossRefGoogle Scholar
  31. 31.
    Singh JP, Roy BK (2017) Hidden attractors in a new complex generalized Lorenz hyperchaotic system, its synchronization using adaptive contraction theory, circuit validation and application. Nonlinear Dyn.  https://doi.org/10.1007/s11071-018-4062-z Google Scholar
  32. 32.
    Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D Nonlinear Phenom 16(3):285–317MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Parlitz U, Lauterborn W (1987) Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys Rev A 36:1428CrossRefGoogle Scholar
  34. 34.
    Kocarev L, Halle K, Eckert K, Chua L (1993) Experimental observation of antimonotonicity in Chua’s circuit. Int J Bifurc Chaos 3:1051–1055CrossRefzbMATHGoogle Scholar
  35. 35.
    Kengne J, Folifack Signing VR, Chedjou JC, Leutcho GD (2017) Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors. Int J Dyn Control.  https://doi.org/10.1007/s40435-017-0318-6.15 Google Scholar
  36. 36.
    Kengne J, Jafari S, Njitacke ZT, Yousefi Azar Khanian M, Cheukem A (2017) Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms. Commun Nonlinear Sci Numer Simul.  https://doi.org/10.1016/j.cnsns.2017.04.017 Google Scholar
  37. 37.
    Dawson SP, Grebogi C, Yorke JA, Kan I, Koçak H (1992) Antimonotonicity: inevitable reversals of period-doubling cascades. Phys Lett A 162:249–254MathSciNetCrossRefGoogle Scholar
  38. 38.
    Bier M, Boutis TC (1984) Remerging Feigenbaum trees in dynamical systems. Phys Lett A 104:239–244MathSciNetCrossRefGoogle Scholar
  39. 39.
    Dawson SP (1993) Geometric mechanism for antimonotonicity in scalar maps with two critical points. Phys Rev E 48:1676–1680MathSciNetCrossRefGoogle Scholar
  40. 40.
    Pham VT, Jafari S, Vaidyanathan S, Volos C, Wang X (2015) A novel memristive neural network with hidden attractors and its circuitry implementation. Sci China Technol Sci.  https://doi.org/10.1007/s11431-015-5981-2 Google Scholar
  41. 41.
    Njitacke ZT, Kengne J, Negou AN (2017) Dynamical analysis and electronic circuit realization of an equilibrium free 3D chaotic system with a large number of coexisting attractors. Optik 130:356–364CrossRefGoogle Scholar
  42. 42.
    Filali RL, Benrejeb M, Borne P (2014) Observer-based secure communication design using discrete-time hyperchaotic systems. Comm Nonlinear Sci Numer Simul 19:1424MathSciNetCrossRefGoogle Scholar
  43. 43.
    Volos C, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Sig Process 93:1328–1340CrossRefGoogle Scholar
  44. 44.
    Nguimdo RM, Tchitnga R, Woafo P (2013) Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation. Chaos 23:043122MathSciNetCrossRefGoogle Scholar
  45. 45.
    Fortuna L, Frasca M, Rizzo A (2003) Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Trans Instrum Meas 52(6):1809CrossRefGoogle Scholar
  46. 46.
    Patel MS, Patel U, Sen A, Sethia GC, Hens C, Dana SK, Feudel U, Showalter K, Ngonghala CN, Amritkar RE (2014) Experimental observation of extreme multistability in an electronic system of two coupled Rossler oscillators. Phys Rev E 89:022918CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Z. T. Njitacke
    • 1
    • 2
    Email author
  • J. Kengne
    • 1
  • T. Fonzin Fozin
    • 1
    • 2
  • B. P. Leutcha
    • 3
  • H. B. Fotsin
    • 2
  1. 1.Unité de Recherche d’Automatique et Informatique Appliquée (LAIA), Department of Electrical Engineering, IUT-FV BandjounUniversity of DschangDschangCameroon
  2. 2.Unité de Recherche de Matière Condensée, d’Electronique et de Traitement du Signal (LAMACETS), Department of PhysicsUniversity of DschangDschangCameroon
  3. 3.Department of Chemistry, Faculty of ScienceThe University of MarouaMarouaCameroon

Personalised recommendations