Advertisement

International Journal of Dynamics and Control

, Volume 7, Issue 4, pp 1453–1461 | Cite as

A new Hammerstein model control strategy: feedback stabilization and stability analysis

  • Zeineb RayoufEmail author
  • Chekib Ghorbel
  • Naceur Benhadj Braiek
Article
  • 57 Downloads

Abstract

This paper treats the identification, the control and the stability analysis of the discrete Hammerstein structure which is composed by a static nonlinearity gain associated with a linear dynamic subsystem. Its parameters are obtained from the subspace identification using the multivariable output error state space algorithm. The stabilization of this class of systems is generally leaded by a nonlinear control law, including an exact inverse of the static nonlinearity. Then, it is possible to use a linear state feedback controller to stabilize the Hammerstein system in closed-loop and to track the reference input. Thus, the performances of this method become limited when the considered static nonlinearity is approximately invertible. In this context, an approximate inverse of this component is investigated. Furthermore, based on the Lyapunov method, the stability conditions are obtained by solving a set of linear matrix inequalities constraints. The case of a coupled two-tank system is considered in order to illustrate the validity of the proposed approach.

Keywords

Hammerstein structure Subspace identification MOESP algorithm Lyapunov method LMI Stability analysis Sector nonlinearity 

References

  1. 1.
    Ding F, Wang Y, Ding J (2015) Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model. Digital Signal Process 37:100–108CrossRefGoogle Scholar
  2. 2.
    Erçin Ö, Coban R (2012) Identification of linear dynamic systems using the artificial bee colony algorithm. Turk J Electr Eng Comput Sci 20(1):1175–1188Google Scholar
  3. 3.
    Kara T, Eker I (2004) Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments. Energy Convers Manag 45(7–8):1087–1106CrossRefGoogle Scholar
  4. 4.
    Elloumi S, Benhadj Braiek N (2002) Robust decentralized control for multimachine power systems-the LMI approach. Proc IEEE Int Conf Syst Man Cybern 6:476–480Google Scholar
  5. 5.
    Chaudhary NI, Ahmed M, Khan ZA, Zubair S, Raja MAZ, Dedovic N (2018) Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive systems. Appl Math Model 55:698–715MathSciNetCrossRefGoogle Scholar
  6. 6.
    Meher T, Majhi S (2018) Relay based identification of Hammerstein model. Int J Dyn Control 6:1–9MathSciNetCrossRefGoogle Scholar
  7. 7.
    Giri F (2010) Block-oriented nonlinear system identification. Springer, LondonCrossRefGoogle Scholar
  8. 8.
    Ghorbel C, Rayouf Z, Benhadj Braiek N (2017) A new identification approach of MIMO Hammerstein model with separate nonlinearities. Adv Sci Technol Eng Syst J 2(6):56–62CrossRefGoogle Scholar
  9. 9.
    Sadabadi MS, Karrari M, Malik OP (2007) Nonlinear identification of synchronous generator using Hammerstein model with piecewise linear static maps. In: Power technology, 2007 IEEE Lausanne, pp 1067–1071Google Scholar
  10. 10.
    Bouafoura MK, Moussi O, Benhadj Braiek N (2011) A fractional state space realization method with block pulse basis. Signal Process 91(3):492–497CrossRefGoogle Scholar
  11. 11.
    Gomez JC, Jutan A, Baeyens E (2004) Wiener model identification and predictive control of a pH neutralisation process. IEEE Proc Control Theory Appl 151(3):329–338CrossRefGoogle Scholar
  12. 12.
    Pearson RK, Pottmann M, Luyben WL (2000) Gray-box identification of block-oriented nonlinear models. J Process Control 10:301–315CrossRefGoogle Scholar
  13. 13.
    Ding F, Liu XP, Liu G (2011) Identification methods for Hammerstein nonlinear systems. Digit Signal Process 21(2):215–238CrossRefGoogle Scholar
  14. 14.
    Wang DQ, Ding F (2011) Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process 91(5):1182–1189CrossRefGoogle Scholar
  15. 15.
    Mandic DP, Chambers JA (2000) Advanced RNN based NARMA predictors. J Signal Process Syst Signal Image Video Technol 26(1–2):105–117CrossRefGoogle Scholar
  16. 16.
    Chaudhary NI, Raja MAZ (2015) Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn 79(2):1385–1397MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gomez JC, Baeyens E (2005) Subspace-based identification algorithms for Hammerstein and Wiener models. Eur J Control 11(2):127–136MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jalaleddini K, Kearney RE (2011) An identification algorithm for Hammerstein systems using subspace method. In: American control conference, pp 4793–4797Google Scholar
  19. 19.
    Chibani A, Chadli M, Benhadj Braiek N (2016) A sum of squares approach for polynomial fuzzy observer design for polynomial fuzzy systems with unknown inputs. Int J Control Autom Syst 14(1):323–330CrossRefGoogle Scholar
  20. 20.
    Rayouf Z, Ghorbel C, Benhadj Braiek N (2017) Identification and nonlinear PID control of Hammerstein model using polynomial structure. Int J Adv Comput Sci Appl 8(4):488–493Google Scholar
  21. 21.
    Hong X, Mitchell RJ, Chen S (2012) Modeling and control of Hammerstein system using B-spline approximation and the inverse of De Boor algorithm. Int J Syst Sci 43(10):1976–1984CrossRefGoogle Scholar
  22. 22.
    Hong X, Mitchell RJ (2006) A pole assignment controller for Bezier–Bernstein polynomial based Hammerstein model. In: Proceedings of international control conferenceGoogle Scholar
  23. 23.
    Golub GH, Van Loan CF (1989) Matrix computations. The Johns Hopkins University Press, BaltimorezbMATHGoogle Scholar
  24. 24.
    Hamed AR, Shaban EM, Darwish RR (2017) Design and implementation of discrete PID control applied to Bitumen tank based on new approach of pole placement technique. Int J Dyn Control 5(3):604–613MathSciNetCrossRefGoogle Scholar
  25. 25.
    Abdelaziz TH, Valasek M (2005) State derivative feedback by LQR for linear time-invariant systems. In: Proceedings of the 16th IFAC world congressCrossRefGoogle Scholar
  26. 26.
    Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory, vol 15. SIAM, PhiladelphiaCrossRefGoogle Scholar
  27. 27.
    Krstic M (2010) Lyapunov stability of linear predictor feedback for time-varying input delay. IEEE Trans Autom Control 55(2):554–559MathSciNetCrossRefGoogle Scholar
  28. 28.
    Loussifi H, Nouri K, Benhadj Braiek N (2016) A new efficient hybrid intelligent method for nonlinear dynamical systems identification: the wavelet kernel fuzzy neural network. Commun Nonlinear Sci Numer Simul 32:10–30MathSciNetCrossRefGoogle Scholar
  29. 29.
    Khezami N, Benhadj Braiek N, Guillaud X (2010) Wind turbine power tracking using an improved multimodel quadratic approach. ISA Trans 49(3):326–334CrossRefGoogle Scholar
  30. 30.
    Belhaouane MM, Mtar R, Belkhiria Ayadi H, Benhadj Braiek N (2009) A technique for the global stabilization of nonlinear polynomial systems: an LMI approach. Int J Comput Commun Control 4(4):335–348CrossRefGoogle Scholar
  31. 31.
    Roy P, Kar B, Kumar A, Roy BK (2016) Level control of two tank system by fractional order integral state feedback controller tuned by PSO with experimental validation. In: IEEE international conference one control, measurement and instrumentation, pp 224–228Google Scholar
  32. 32.
    Chadli M, Maquin D, Ragot J (2001) On the stability analysis of multiple model systems. In: European control conference, pp 1894–1899Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zeineb Rayouf
    • 1
    Email author
  • Chekib Ghorbel
    • 1
  • Naceur Benhadj Braiek
    • 1
  1. 1.Advanced System LaboratoryPolytechnic School of TunisiaEl MarsaTunisia

Personalised recommendations