Advertisement

Multistability and chaotic dynamics of a simple Jerk system with a smoothly tuneable symmetry and nonlinearity

  • R. L. Mogue TagneEmail author
  • J. Kengne
  • A. Nguomkam Negou
Article

Abstract

A novel autonomous chaotic Jerk system with a nonlinearity in the form \( \phi_{k} \left( x \right) = 0.5\left( {\exp \left( {kx} \right) - \exp \left( { - x} \right)} \right) \) which for \( k = 1 \) reduces to the hyperbolic sine is proposed. Two general purpose semiconductor diodes connected in antiparallel are utilized to synthesize the tuneable nonlinearity. The new system presents three rest points among which two unstable ones. Thus, the dynamics is organized around the zero equilibrium point. Correspondingly, the model develops only mono-scroll strange attractors. The numerical analysis of the system reveals some interesting phenomena such as period doubling cascades to chaos, period-doubling reversals, periodic windows, hysteresis, and coexisting bifurcations as well. The presence of parallel bifurcation branches justifies the occurrence of multiple coexisting attractors in some ranges of parameters. Several basins of attraction with extremely complex structures are provided to illustrate the magnetization of the state space due to the presence of numerous competing attractors. The practical implication of this phenomenon is that it might be very difficult to predict the dynamical state of the system. Multistability in the symmetry boundary is studied by using \( k \) as control parameter. A very good agreement is observed between practical experiments and the theoretical predictions.

Keywords

Autonomous Jerk system Smoothly tuneable nonlinearity Parallel bifurcation branches Multiple attractors Experimental measurements 

References

  1. 1.
    Upadhyay RK (2003) Multiple attractors and crisis route to chaos in a model of food-chain. Chaos, Solitons Fractals 16:737–747MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cushing JM, Henson SM, Blackburn CC (2007) Multiple mixed attractors in a competition model. J Biol Dyn 1:347–362MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Masoller C (1994) Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys Rev 50:2569–2578CrossRefGoogle Scholar
  4. 4.
    Njitacke ZT, Kengne J, Fotsin HB, Nguomkam NA, Tchiotsop D (2016) Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos, Solitons Fractals 91:180–197CrossRefzbMATHGoogle Scholar
  5. 5.
    Pham VT, Vaidyanathan S, Volos CK, Jafari S, Kuznetsov NV, Hoang TM (2016) A novel memristive timedelay chaotic system without equilibrium points. Eur Phys J Spec Top 225(1):127–136CrossRefGoogle Scholar
  6. 6.
    Hens C, Dana SK, Feudel U (2015) Extreme multistability: attractors manipulation and robustness. Chaos 25:053112MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bao BC, Xu B, Bao H, Chen M (2016) Extreme multistability in a memristive circuit. Electron Lett 52(12):1008–1010CrossRefGoogle Scholar
  8. 8.
    Bao B, Jiang T, Xu Q, Chen M, Wu H, Hu Y (2016) Coexisting infinitely many attractors in active bandpass filter-based memristive circuit. Nonlinear Dyn 86(3):1711–1723CrossRefGoogle Scholar
  9. 9.
    Sprott JC (1997) Some simple Jerk functions. Am. J. Phys A. 65:537–543CrossRefGoogle Scholar
  10. 10.
    Sprott JC (1997) Simplest dissipative chaotic flow. Phys Lett A 228:271–274MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sprott JC (2000) Simple chaotic systems and circuits. Am J Phys 68:758–763CrossRefGoogle Scholar
  12. 12.
    Sprott JC (2010) Elegant chaos: algebraically simple flow. World Scientific Publishing, SingaporeCrossRefzbMATHGoogle Scholar
  13. 13.
    Sprott JC (2011) A new chaotic Jerk circuit. IEEE Trans Circuits Syst II Expr Br 58:240–243CrossRefGoogle Scholar
  14. 14.
    Njitacke ZT, Kengne J, Nguomkam NA, Fouodji TM, Fotsin HB (2015) Coexistence of multiple attractors and crisis route to chaos in a novel chaotic Jerk circuit. Int J Bifurcat Chaos 25(4):1550052CrossRefzbMATHGoogle Scholar
  15. 15.
    Kengne J, Negou AN, Tchiotsop D (2017) Antimonotonicity chaos and multiple attractors in a novel autonomous memristor-based Jerk circuit. Nonlinear Dyn 88:2589–2608CrossRefGoogle Scholar
  16. 16.
    Parlitz U, Lauterborn W (1985) Superstructure in the bifurcation set of the Duffing equation ẍ + dẋ+ x+ = f cos (ωt). Phys Lett A 107:351–355MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nguomkam Negou A, Kengne J, Tchiotsop D (2018) Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system. Chaos, Solitons Fractals 107:275–289MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kengne J, Njitacke ZT, Fotsin HB (2016) Dynamical analysis of a simple autonomous Jerk system with multiple attractors. Nonlinear Dyn 83:751–765MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kengne J, Nguomkam Negou A, Njitacke ZT (2017) Antimonotonicity, chaos and multiple attractors in a novel autonomous Jerk circuit. Int J Bifurcat Chaos 27(7):1750100MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Physica D 16:285–317MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Strogatz SH (1994) Nonlinear dynamics and chaos. Addison-Wesley, ReadingGoogle Scholar
  22. 22.
    Sprott JC (2011) A proposed standard for the publication of new chaotic systems. Int J Bifurcat Chaos 21(9):2391–2394CrossRefGoogle Scholar
  23. 23.
    Kuznetsov AP, Kuznetsov SP, Mosekilde E, Stankevich NV (2015) Co-existing hidden attractors in a radio-physical oscillator. J Phys A: Math Theor 48:125101MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and antisynchronization of a six-term novel Jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8:24–36CrossRefGoogle Scholar
  25. 25.
    Kengne J, Njitacke ZT, Fotsin HB (2016) Dynamical analysis of a simple autonomous Jerk system with multiple attractors. Nonlinear Dyn 83:751MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vaidyanathan S, Azar AT (2016) Adaptive backstepping control and synchronization of a novel 3-D Jerk system with an exponential nonlinearity. In: Azar A, Vaidyanathan S (eds) Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing., vol 337. Springer, ChamGoogle Scholar
  27. 27.
    Upadhyay RK (2003) Multiple attractors and crisis route to chaos in a model of food-chain. Chaos Solit Fract 16:737–747MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Vaithianathan V, Veijun J (1999) Coexistence of four different attractors in a fundamental power system model. IEEE Trans Circutes Syst I 46:405–409CrossRefGoogle Scholar
  29. 29.
    Nguomkam NA, Kengne J (2018) Dynamic analysis of a unique Jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. Int J Electron Commun (AEÜ) 90:1–19CrossRefGoogle Scholar
  30. 30.
    Pivka L, Wu CW, Huang A (1994) Chua’s oscillator: a com- pendium of chaotic phenomena. J Frankl Inst 331B(6):705–741CrossRefzbMATHGoogle Scholar
  31. 31.
    Kuznetsov AP, Kuznetsov SP, Mosekilde E, Stankevich NV (2015) Co-existing hidden attractors in a radio-physical oscillator. J Phys A: Math Theor 48:125101MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li C, Sprott JC (2013) Amplitude control approach for chaoticsignals. Nonlinear Dyn 73:1335–1341CrossRefzbMATHGoogle Scholar
  33. 33.
    Swathy PS, Thamilmaran K (2013) An experimental study on SC-CNN based canonical Chua’s circuit. Nonlinear Dyn 71:505–514MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. L. Mogue Tagne
    • 1
    • 2
    Email author
  • J. Kengne
    • 1
  • A. Nguomkam Negou
    • 1
    • 2
  1. 1.Unité de Recherche de Laboratoire d’Automatique et Informatique Appliquée (LAIA), Department of Electrical Engineering, IUT-FV BandjounUniversity of DschangDschangCameroon
  2. 2.Unité de Recherche de Matière Condensée, d’Electronique et de Traitement du Signal, Department of PhysicsUniversity of DschangDschangCameroon

Personalised recommendations