Robust control of UAV coaxial rotor by using exact feedback linearization and PI-observer

  • Nkouagnou Calin Joel
  • Haman Djalo
  • Kenfack Jiotsa Aurelien
Article
  • 11 Downloads

Abstract

This paper presents a nonlinear trajectory tracking control design of a coaxial rotor unmanned aerial vehicle (UAV) using exact feedback linearization and PI-observer. Coaxial rotor disturbed dynamics is modelled by two equations of motion, one for translation and the other for the rotation. The exact feedback linearization is used to linearize the system in terms of input–output and the PI-observer is used to estimate vector state and unknown inputs of the system. The proposed control law guarantees convergence of the coaxial rotor UAV to a given reference trajectory in spite of disturbances. Numerical simulations are given to validate the obtained results.

Keywords

Coaxial rotor Unmanned aerial vehicle Nonlinear control Feedback linearization PI-observer 

References

  1. 1.
    Koehl A (2012) Modélisation, observation et commande d’un drone miniature à birotor Coaxial. Thèse de Doctorat de l’Université de Lorraine (spécialité automatique)Google Scholar
  2. 2.
    Rida MM (2015) Observation et Commande de Drones Miniatures à voilures tournantes. Thèse de Doctorat de l’Université de Aboubekr Belkaid Tlemcen (spécialité automatique)Google Scholar
  3. 3.
    Drouot A (2013) Stratégies de commande pour la navigation autonome d’un projectile miniature. Thèse de Doctorat de l’Université de Lorraine (spécialité automatique), décembre 2013Google Scholar
  4. 4.
    Corentin CHAUFFAUT Etude de la phase de transition d’un drone tire par tube dédié: Modélisation et commande. Université technologique de Compiègne octobre 2014Google Scholar
  5. 5.
    Bonna R, Camino JF (2015) Trajectory tracking control of a quadrotor using feedback linearization. School of Mechanical Engineering, University of Campinas February 22–27, 2015Google Scholar
  6. 6.
    Voos H (XXXX) Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization University of Applied Sciences Ravensburg-WeingartenGoogle Scholar
  7. 7.
    Zhou H, Pei H, Zhao Y (2011) Trajectory tracking control of a small unmanned helicopter using MPC and BacksteppingUsing. In: 2011 American control conference on O’Farrell street, San Francisco, CA, USA June 29–July 01, 2011Google Scholar
  8. 8.
    Liu Y (2011) Robust nonlinear control design with proportional-integral-observer technique. Dissertation University of Duisburg-EssenGoogle Scholar
  9. 9.
    Zhang F, Söffker D (2009) Active flutter suppression of a nonlinear aeroelastic system using PI-observer. Springer, BerlinCrossRefMATHGoogle Scholar
  10. 10.
    Niemanny H, Stoustrupz J, Shafa B (1997) Fault detection using PI observers. Danish Technical Research Council under rant no. 95-00765Google Scholar
  11. 11.
    Białoń T, Lewicki A, Pasko M, Niestrój R (2013) PI observer stability and applicationin an induction motor control system. Bull Pol Aacad Sci Tech Sci 61(3):595–598Google Scholar
  12. 12.
    Jung J, Han S, Huh K (2008) Robust proportional-integral Kalman filter design using a convex optimization method. J Mech Sci Technol 22:879–886CrossRefGoogle Scholar
  13. 13.
    Martini A (2008) Modélisation et Commande de vol d’un hélicoptere drone soumis à une rafale de vent. Université Paul Verlaine – Metz. novembre 2008Google Scholar
  14. 14.
    Liu C-S, Peng H (1997) Disturbance observer basedtracking control. Department of Mechanical Engineering and Applied Mechanics, University of Michigan. May 15, 1997Google Scholar
  15. 15.
    Aguilar-Ibanez C, Sira-Ramirez H, Suarez-Caston MS (2016) Alinear active disturbance rejection control for a ball and rigid triangle system. Math Probl EngGoogle Scholar
  16. 16.
    Aguilar-libanez C, Sira- Ramirez H, Angel Acosta J (2017) A Lyaponov perspective. Int J Robust Nonlinear Control Stability Active Disturb Rreject Control Uncertain SystGoogle Scholar
  17. 17.
    Aguilar-Ibanez C, Sira-Ramirez H, Angel Acosta J (2017) Stability of active disturbance rejection control for uncertain systems: a Lyapunov perspective. Int J Robust Nonlinear ControllerGoogle Scholar
  18. 18.
    Aguilar-ibanez C, Garcia-Canseco E, Martinez-Garcia R, Martinez-Garcia JC, Suarez-Castanon MS (2017) An I&I-based observer to solve the output-feedback synchronization problem for a class of chaotic systems. Asian J ControlGoogle Scholar
  19. 19.
    Zhao S, Gao Z (2012) An active disturbance rejection based approach to vibration suppression in two-inertia systems. Asian J ControlGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Electronics Electrotechnics and AutomaticsUniversity of NgaoundéréNgaoundéréCameroon
  2. 2.Laboratory of Mechanics of Complex SystemsUniversity of Yaoundé1YaoundéCameroon

Personalised recommendations