Cheap compensation in disturbed linear dynamical systems with multi-input delays

  • Salma SouhaileEmail author
  • Larbi Afifi


In this paper, we investigate the remediability problem of any disturbances for a class of distributed systems with multiple input delays. We show how to remedy any disturbance effect with a convenient choice of the control operator through the observation. The developments are based on semigroups theory and using an extension of Hilbert Uniqueness Method. An application to hyperbolic systems is presented. The usual case of sensors and actuators is examined and numerical simulations are also given.


Dynamical systems Control Delays Disturbance Observation 


  1. 1.
    Basin M, Rodriguez-Gonzalez J (2006) Optimal control for linear systems with multiple time delays in control input. IEEE Trans Autom Control 51(1):91–97MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Delfour M, Manitius A (1977) Control systems with delays: areas of applications and present status of the linear theory. Springer, Berlin, pp 420–437zbMATHGoogle Scholar
  3. 3.
    Diekmann O, Gils S, Lunel S, Walther H (1995) Delay equations -functional-, complex-, and nonlinear analysis. Springer, New YorkzbMATHGoogle Scholar
  4. 4.
    Meyers RA (2011) Mathematics of complexity and dynamical systems. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Phat VN (1989) Controllability of discrete-time systems with multiple delays on controls and states. Int J Control 49(5):1645–1654MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Afifi L, El Jai A (2015) Systèmes distribués perturbés. Collection Études. Presses Universitaires de PerpignanGoogle Scholar
  7. 7.
    Isakov V (1990) Inverse source problems. American Mathematical Society, ProvidenceCrossRefzbMATHGoogle Scholar
  8. 8.
    Rabah R, Malabare M (1996) Structure at infinity revisited for delay systems. In: IEEE-SMC-IMACS multiconference, symposium on robotics and cybernetics (CESA’96). Symposium in modelling, analysis and simulation, vol 1, pp 87–90Google Scholar
  9. 9.
    Rabah R, Malabare M (2004) Weak structure at infinity and row-by-row decoupling for linear delay systems. Kybernetika 40(2):181–195MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sename O, Rabah R, Lafay JF (1995) Decoupling without prediction of linear systems with delays: a structural approach. Syst Control Lett 25(5):387–395MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Afifi L, Chafiai A, El Jai A (2001) Spatial compensation of boundary disturbances by boundary actuators. Int J Appl Math Comput Sci 11(4):899–920MathSciNetzbMATHGoogle Scholar
  12. 12.
    Afifi L, Chafiai A, Bel Fekih A (2002) Enlarged exact compensation in distributed systems. Int J Appl Math Comput Sci 12(4):467–477MathSciNetzbMATHGoogle Scholar
  13. 13.
    Qaraai Y, Bernoussi A, El Jai A (2008) How to compensate a spreading disturbance for a class of nonlinear systems. Appl Math Comput Sci 18:171–187MathSciNetzbMATHGoogle Scholar
  14. 14.
    Qaraai Y, Bernoussi A (2010) Protector control: extension to a class of nonlinear distributed systems. Int J Appl Math Comput Sci 20(3):427–443MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lions J-L (1968) Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. DunodGoogle Scholar
  16. 16.
    Batakài A, Piazzera S (2001) Semigroups and linear partial differential equations with delay. J Math Anal Appl 264(1):1–20MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Batakài A, Piazzera S (2005) Semigroups for delay equations. A K Peters/CRC PressGoogle Scholar
  18. 18.
    Bernier C, Manitius A (1978) On semigroups in \(R^n * L^p\) corresponding to differential equations with delays. Can J Math 30(5):897–914CrossRefzbMATHGoogle Scholar
  19. 19.
    Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser, BaselCrossRefzbMATHGoogle Scholar
  20. 20.
    Hadd S, Idrissi A (2005) Regular linear systems governed by systems with state, input and output delays. IMA J Math Control Inf 22(4):423–439MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hadd S (2006) An evolution equation approach to nonautonomous linear systems with state, input, and output delays. SIAM J Control Optim 45(1):246–272MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hadd S, Zhong QC (2009) On feedback stabilizability of linear systems with state and input delays in banach spaces. IEEE Trans Autom Control 54(3):438–451MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Curtain RF, Pritchard AJ (1978) Infinite dimensional linear systems theory. Lecture notes in control and information sciences. Springer, BerlinGoogle Scholar
  24. 24.
    Klamka J (2009) Stochastic controllability of systems with multiple delays in control. Int J Appl Math Comput Sci 19(1)Google Scholar
  25. 25.
    El Jai A, Pritchard AJ (1987) Sensors and actuators in distributed systems. Int J Control 46:1139–1153MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Sciences Ain ChockUniversity Hassan IIMaârif, CasablancaMorocco

Personalised recommendations