Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chemical kinetic mechanism for diesel/biodiesel/ethanol surrogates using n-decane/methyl-decanoate/ethanol blends

Abstract

Diesel–biodiesel–ethanol blends have been the focus of research in engines, as biodiesel and ethanol additives can lower pollutant emissions while maintaining diesel performance. To facilitate modeling and analysis, those complex fuels are often substituted by simplified surrogate fuels, composed of only a few well-characterized molecules, but displaying similar properties compared to the fuel that they represent. In this context, the objective of this paper is to develop and validate a new chemical reaction mechanism for diesel–biodiesel–ethanol surrogate fuels. n-Decane and methyl-decanoate (MD) were chosen as the diesel and biodiesel surrogates, respectively, as they are frequently used in the literature. As the available reduced methyl-decanoate models do not reproduce the negative temperature coefficient behavior found in auto-ignition delay experiments, the detailed MD model of Dievart et al. was reduced using DRGEP. This last model was then combined with the reduced n-decane model due to Chang et al. and that of ethanol due to Marinov. Validations are performed on 0D constant-volume auto-ignition by comparing auto-ignition delay times and 1D freely propagating gaseous premixed flame configurations by analyzing laminar flame speeds, using the original single component kinetic models, against the combined surrogate kinetic models, and experimental results found in the literature. Laminar flame speeds of n-decane/methyl-decanoate/ethanol blends are also presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Westbrook CK, Dryer FL (1984) Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust Sci 10(1):1–57

  2. 2.

    Pitz WJ, Mueller CJ (2011) Recent progress in the development of diesel surrogate fuels. Progr Energy Combust Sci 37(3):330–350

  3. 3.

    Edwards T, Colket M, Cernansky N, Dryer F, Egolfopoulos F, Friend D, Law E, Lenhert D, Lindstedt P, Pitsch H, et al. (2007) Development of an experimental database and kinetic models for surrogate jet fuels. In: 45th AIAA aerospace sciences meeting and exhibit, 770

  4. 4.

    Shahir S, Masjuki H, Kalam M, Imran A, Ashraful A (2015) Performance and emission assessment of diesel–biodiesel–ethanol, bioethanol blend as a fuel in diesel engines: a review. Renew Sustain Energy Rev 48:62–78. ISSN 1364–0321. https://doi.org/10.1016/j.rser.2015.03.049

  5. 5.

    de Oliveira A, de Morais AM, Valente OS, Sodré JR (2017) Combustion, performance and emissions of a diesel power generator with direct injection of B7 and port injection of ethanol. J Braz Soc Mech Sci Eng 39(4):1087–1096

  6. 6.

    Pradelle F, Braga S L, de Aguiar Martins A R F, Turkovics F, Pradelle R N C (2017) Stabilization of diesel–biodiesel–ethanol (DBE) blends: formulation of an additive from renewable sources. J Braz Soc Mech Sci Eng 39(9):3277–3293

  7. 7.

    Júnior LCSS, Ferreira VP, da Silva JA, Torres EA, Pepe IM (2018) Oxidized biodiesel as a cetane improver for diesel-biodiesel-ethanol mixtures in a vehicle engine. J Braz Soc Mech Sci Eng 40(2):79

  8. 8.

    Shamun S, Belgiorno G, Blasio GD, Beatrice C, Tunér M, Tunestål P (2018) Performance and emissions of diesel–biodiesel–ethanol blends in a light duty compression ignition engine. Appl Therm Eng 145:444–452. ISSN 1359–4311. https://doi.org/10.1016/j.applthermaleng.2018.09.067

  9. 9.

    Khoobbakht G, Karimi M, Kheiralipour K, Effects of biodiesel–ethanol–diesel blends on the performance indicators of a diesel engine: a study by response surface modeling. Appl Therm Eng. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2018.08.025

  10. 10.

    Chotwichien A, Luengnaruemitchai A, Jai-In S (2009) Utilization of palm oil alkyl esters as an additive in ethanol–diesel and butanol–diesel blends. Fuel 88(9):1618–1624

  11. 11.

    Chen L, Sun P, Ding S, Yang S (2014) Miscibility of ternary systems containing kerosene-based surrogate fuel and hydrous ethanol: experimental data+ thermodynamic modeling. Fluid Phase Equilib 379:1–9

  12. 12.

    Alviso D, Krauch F, Roman R, Maldonado H, dos Santos RG, Rolon J, Darabiha N (2017) Development of a diesel–biodiesel–ethanol combined chemical scheme and analysis of reactions pathways. Fuel 191:411–426

  13. 13.

    Andrae J (2011) A kinetic modeling study of self-ignition of low alkylbenzenes at engine-relevant conditions. Fuel Process Technol 92(10):2030–2040. ISSN 0378-3820. https://doi.org/10.1016/j.fuproc.2011.06.004

  14. 14.

    Luo Z, Plomer M, Lu T, Som S, Longman DE, Sarathy S, Pitz WJ (2012) A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel 99(0):143–153. ISSN 0016-2361. https://doi.org/10.1016/j.fuel.2012.04.028

  15. 15.

    Ma Y, Huang R, Fu J, Huang S, Liu J (2018) Development of a diesel/biodiesel/alcohol (up to n-pentanol) combined mechanism based on reaction pathways analysis methodology. Appl Energy 225:835–847

  16. 16.

    Liu X, Wang H, Zheng Z, Liu J, Reitz RD, Yao M (2016) Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. Energy 114:542–558

  17. 17.

    Diévart P, Won SH, Dooley S, Dryer FL, Ju Y (2012) A kinetic model for methyl decanoate combustion. Combust Flame 159(5):1793–1805

  18. 18.

    Pepiot-Desjardins P, Pitsch H (2008) An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust Flame 154(1–2):67–81. ISSN 0010-2180. https://doi.org/10.1016/j.combustflame.2007.10.020

  19. 19.

    Chang Y, Jia M, Liu Y, Li Y, Xie M (2013) Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology. Combust Flame 160(8):1315–1332

  20. 20.

    Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. Int J Chem Kinet 3(2):257–263

  21. 21.

    Darabiha N, Candel S, Giovangigli V, Smooke M (1988) Extinction of strained premixed propane-air flames with complex chemistry. Combust Sci Technol 60:267–285

  22. 22.

    Franzelli B, Fiorina B, Darabiha N (2013) A tabulated chemistry method for spray combustion. Proc Combust Inst 34(1):1659–1666. ISSN 1540-7489. https://doi.org/10.1016/j.proci.2012.06.013

  23. 23.

    Alviso D, Rolon J, Scouflaire P, Darabiha N (2015) Experimental and numerical studies of biodiesel combustion mechanisms using a laminar counterflow spray premixed flame. Fuel 153:154–165. ISSN 0016–2361. https://doi.org/10.1016/j.fuel.2015.02.079

  24. 24.

    Alviso D, Duarte S, Alvarenga N, Rolon JC, Darabiha N (2018) Chemical kinetic mechanism for pyrolysis bio-oil surrogate. Energy Fuels 32:10984–10998. https://doi.org/10.1021/acs.energyfuels.8b02219

  25. 25.

    Delfau J-L, Bouhria M, Reuillon M, Sanogo O, Akrich R, Vovelle C (1991) Experimental and computational investigation of the structure of a sooting decane-O 2-Ar flame. In: Symposium (International) on combustion, vol 23. Elsevier, pp 1567–1572

  26. 26.

    Bales-Gueret C, Cathonnet M, Boettner JC, Gaillard F (1992) Experimental study and kinetic modeling of higher hydrocarbon oxidation in a jet-stirred flow reactor. Energy Fuels 6(2):189–194

  27. 27.

    Nehse M, Warnat J, Chevalier C (1996) Kinetic modeling of the oxidation of large aliphatic hydrocarbons. In: Symposium (International) on combustion, vol 26. Elsevier, pp 773–780

  28. 28.

    Douté C, Delfau J-L, Vovelle C (1997) Modeling of the structure of a premixed n-decane flame. Combust Sci Technol 130(1–6):269–313

  29. 29.

    Glaude P, Warth V, Fournet R, Battin-Leclerc F, Scacchi G, Côme G (1998) Modeling of the oxidation of n-octane and n-decane using an automatic generation of mechanisms. Int J Chem Kinetics 30(12):949–959

  30. 30.

    Zeppieri SP, Klotz SD, Dryer FL (2000) Modeling concepts for larger carbon number alkanes: a partially reduced skeletal mechanism for n-decane oxidation and pyrolysis. Proc Combust Inst 28(2):1587–1595

  31. 31.

    Battin-Leclerc F, Fournet R, Glaude P, Judenherc B, Warth V, Côme G, Scacchi G (2000) Modeling of the gas-phase oxidation of n-decane from 550 to 1600 K. Proc Combust Inst 28(2):1597–1605

  32. 32.

    Buda F, Bounaceur R, Warth V, Glaude P-A, Fournet R, Battin-Leclerc F (2005) Progress toward a unified detailed kinetic model for the autoignition of alkanes from C 4 to C 10 between 600 and 1200 K. Combust Flame 142(1):170–186

  33. 33.

    Ranzi E, Frassoldati A, Granata S, Faravelli T (2005) Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes. Ind Eng Chem Res 44(14):5170–5183

  34. 34.

    Muharam Y, Warnatz J (2007) Kinetic modelling of the oxidation of large aliphatic hydrocarbons using an automatic mechanism generation. Phys Chem Chem Phys 9(31):4218–4229

  35. 35.

    Marchal C, Delfau J-L, Vovelle C, Moréac G, Mounaı C, Mauss F et al (2009) Modelling of aromatics and soot formation from large fuel molecules. Proc Combust Inst 32(1):753–759

  36. 36.

    Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ (2009) A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust Flame 156(1):181–199

  37. 37.

    Niemeyer KE, Sung C-J, Raju MP (2010) Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combust Flame 157(9):1760–1770

  38. 38.

    Vovelle C, Delfau J-L, Reuillon M (1994) Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressure. In: Bockhorn H (ed) Soot formation in combustion. Springer, Berlin, pp 50–65

  39. 39.

    Dagaut P, Reuillon M, Boettner J-C, Cathonnet M (1994) Kerosene combustion at pressures up to 40 atm: experimental study and detailed chemical kinetic modeling. In: Symposium (international) on combustion, vol. 25. Elsevier, pp 919–926

  40. 40.

    Dagaut P, Reuillon M, Cathonnet M, Voisin D (1995) High pressure oxidation of normal decane and kerosene in dilute conditions from low to high temperature. J Chim Phys 92(1):47–76

  41. 41.

    Cathonnet M, Voisin D, Etsordi A, Sferdean C, Reuillon M, Boettner J, Dagaut P (1999) Kerosene combustion modeling using detailed and reduced chemical kinetic mechanisms. In: RTO meeting proceedings 14, Gas Turbine Engine Combustion, Emissions and Alternative Fuels, pp 12–16

  42. 42.

    Lindstedt R, Maurice L (2000) Detailed chemical-kinetic model for aviation fuels. J Propuls Power 16(2):187–195

  43. 43.

    Patterson P, Kyne A, Pourkashanian M, Williams A, Wilson C (2001) Combustion of kerosene in counterflow diffusion flames. J Propul Power 17(2):453–460

  44. 44.

    Bikas G, Peters N (2001) Kinetic modelling of n-decane combustion and autoignition: modeling combustion of n-decanem. Combust Flame 126(1):1456–1475

  45. 45.

    Dagaut P, Cathonnet M (2006) The ignition, oxidation, and combustion of kerosene: a review of experimental and kinetic modeling. Prog Energy Combust Sci 32(1):48–92

  46. 46.

    Moss J, Aksit I (2007) Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel. Proc Combust Inst 31(2):3139–3146

  47. 47.

    Honnet S, Seshadri K, Niemann U, Peters N (2009) A surrogate fuel for kerosene. Proc Combust Inst 32(1):485–492

  48. 48.

    Barths H, Pitsch H, Peters N (1999) 3D simulation of DI diesel combustion and pollutant formation using a two-component reference fuel. Oil Gas Sci Technol 54(2):233–244

  49. 49.

    Hentschel W, Schindler K-P, Haahtel O (1994) European diesel research IDEA—experimental results from DI diesel engine investigation. J Fuels Lubr 103:1168–1187

  50. 50.

    Barths H, Hasse C, Bikas G, Peters N (2000) Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model. Proc Combust Inst 28(1):1161–1168

  51. 51.

    H. Ramirez L, K. Hadj-Ali, P. Dievart, G. Moreac, P. Dagaut (2010) Kinetics of oxidation of commercial and surrogate diesel fuels in a jet-stirred reactor: experimental and modeling studies, Energy Fuels 24(3):1668–1676

  52. 52.

    Wang H, Warner SJ, Oehlschlaeger MA, Bounaceur R, Biet J, Glaude P-A, Battin-Leclerc F (2010) An experimental and kinetic modeling study of the autoignition of \(\alpha\)-methylnaphthalene/air and \(\alpha\)-methylnaphthalene/n-decane/air mixtures at elevated pressures. Combust Flame 157(10):1976–1988

  53. 53.

    Pfahl U, Fieweger K, Adomeit G (1996) Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions. In: Symposium (international) on combustion, vol. 26. Elsevier, pp 781–789

  54. 54.

    Zhukov VP, Sechenov VA, Starikovskii AY (2008) Autoignition of n-decane at high pressure. Combust Flame 153(1–2):130–136

  55. 55.

    Kumar K, Mittal G, Sung C-J (2009) Autoignition of n-decane under elevated pressure and low-to-intermediate temperature conditions. Combust Flame 156(6):1278–1288

  56. 56.

    Ji C, Dames E, Wang YL, Wang H, Egolfopoulos FN (2010) Propagation and extinction of premixed C 5-C 12 n-alkane flames. Combust Flame 157(2):277–287

  57. 57.

    Kumar K, Sung C-J, Hui X (2011) Laminar flame speeds and extinction limits of conventional and alternative jet fuels. Fuel 90(3):1004–1011

  58. 58.

    Singh D, Nishiie T, Qiao L (2011) Experimental and kinetic modeling study of the combustion of n-decane, Jet-A, and S-8 in laminar premixed flames. Combust Sci Technol 183(10):1002–1026

  59. 59.

    Hui X, Kumar K, Sung C-J, Edwards T, Gardner D (2012) Experimental studies on the combustion characteristics of alternative jet fuels. Fuel 98:176–182

  60. 60.

    Kim HH, Won SH, Santner J, Chen Z, Ju Y (2013) Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames. Proc Combust Inst 34(1):929–936

  61. 61.

    Munzar J, Akih-Kumgeh B, Denman B, Zia A, Bergthorson J (2013) An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components. Fuel 113:586–597

  62. 62.

    Comandini A, Dubois T, Chaumeix N (2015) Laminar flame speeds of n-decane, n-butylbenzene, and n-propylcyclohexane mixtures. Proc Combust Inst 35(1):671–678

  63. 63.

    Herbinet O, Pitz WJ, Westbrook CK (2008) Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame 154(3):507–528

  64. 64.

    Seshadri K, Lu T, Herbinet O, Humer S, Niemann U, Pitz WJ, Seiser R, Law CK (2009) Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows. Proc Combust Inst 32(1):1067–1074

  65. 65.

    Lu T, Law CK (2005) A directed relation graph method for mechanism reduction. Proc Combust Inst 30(1):1333–1341. ISSN 1540-7489. https://doi.org/10.1016/j.proci.2004.08.145

  66. 66.

    Glaude PA, Herbinet O, Bax S, Biet J, Warth V, Battin-Leclerc F (2010) Modeling of the oxidation of methyl esters—validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combust Flame 157(11):2035–2050. ISSN 0010-2180. https://doi.org/10.1016/j.combustflame.2010.03.012

  67. 67.

    Sarathy S, Thomson M, Pitz W, Lu T (2011) An experimental and kinetic modeling study of methyl decanoate combustion. Proc Combust Inst 33(1):399–405

  68. 68.

    Herbinet O, Glaude P-A, Warth V, Battin-Leclerc F (2011) Experimental and modeling study of the thermal decomposition of methyl decanoate. Combust flame 158(7):1288–1300

  69. 69.

    Grana R, Frassoldati A, Saggese C, Faravelli T, Ranzi E (2012) A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate-Note II: lumped kinetic model of decomposition and combustion of methyl esters up to methyl decanoate. Combust Flame 159(7):2280–2294

  70. 70.

    Diévart P, Won SH, Gong J, Dooley S, Ju Y (2013) A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proc Combust Inst 34(1):821–829

  71. 71.

    Wang W, Oehlschlaeger MA (2012) A shock tube study of methyl decanoate autoignition at elevated pressures. Combust Flame 159(2):476–481

  72. 72.

    Wang YL, Feng Q, Egolfopoulos FN, Tsotsis TT (2011) Studies of C4 and C10 methyl ester flames. Combust Flame 158(8):1507–1519

  73. 73.

    Sarathy SM, Oßwald P, Hansen N, Kohse-Höinghaus K (2014) Alcohol combustion chemistry. Prog Energy Combust Sci 44:40–102

  74. 74.

    Dunphy MP, Patterson PM, Simmie JM (1991) High-temperature oxidation of ethanol. Part 2—kinetic modelling. J Chem Soc, Faraday Trans 87(16):2549–2559

  75. 75.

    Egolfopoulos F, Du D, Law C (1992) A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes. In: Symposium (international) on combustion, vol. 24. Elsevier, pp 833–841

  76. 76.

    Norton T, Dryer F (1992) An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor. Int J Chem Kinet 24(4):319–344

  77. 77.

    Saxena P, Williams FA (2007) Numerical and experimental studies of ethanol flames. Proc Combust Inst 31(1):1149–1156

  78. 78.

    Cancino L, Fikri M, Oliveira A, Schulz C (2010) Measurement and chemical kinetics modeling of shock-induced ignition of ethanol-air mixtures. Energy Fuels 24(5):2830–2840

  79. 79.

    Leplat N, Dagaut P, Togbé C, Vandooren J (2011) Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust Flame 158(4):705–725

  80. 80.

    Liao S, Jiang D, Huang Z, Zeng K, Cheng Q (2007) Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Appl Thermal Eng 27(2–3):374–380. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2006.07.026

  81. 81.

    Bradley D, Lawes M, Mansour M (2009) Explosion bomb measurements of ethanol–air laminar gaseous flame characteristics at pressures up to 1.4 MPa. Combust Flame 156(7):1462–1470. ISSN 0010-2180. https://doi.org/10.1016/j.combustflame.2009.02.007

  82. 82.

    Vancoillie J, Demuynck J, Galle J, Verhelst S, van Oijen J (2012) A laminar burning velocity and flame thickness correlation for ethanol-air mixtures valid at spark-ignition engine conditions. Fuel 102:460–469. ISSN 0016–2361. https://doi.org/10.1016/j.fuel.2012.05.022, special Section: ACS Clean Coal

  83. 83.

    Konnov A, Meuwissen R, de Goey L (2011) The temperature dependence of the laminar burning velocity of ethanol flames. Proc Combust Inst 33(1):1011–1019

  84. 84.

    van Lipzig J, Nilsson E, de Goey L, Konnov A (2011) Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel 90(8):2773–2781. ISSN 0016-2361

  85. 85.

    Broustail G, Seers P, Halter F, Moréac G, Mounaim-Rousselle C (2011) Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends. Fuel 90(1):1–6. ISSN 0016-2361. https://doi.org/10.1016/j.fuel.2010.09.021

  86. 86.

    Dirrenberger P, Glaude P, Bounaceur R, Gall HL, da Cruz AP, Konnov A, Battin-Leclerc F (2014) Laminar burning velocity of gasolines with addition of ethanol. Fuel 115:162–169. ISSN 0016–2361. https://doi.org/10.1016/j.fuel.2013.07.015

  87. 87.

    Tomlin AS, Pilling MJ, Turányi T, Merkin JH, Brindley J (1992) Mechanism reduction for the oscillatory oxidation of hydrogen: Sensitivity and quasi-steady-state analyses. Combust Flame 91(2):107–130. ISSN 0010-2180. https://doi.org/10.1016/0010-2180(92)90094-6

  88. 88.

    Vajda S, Valko P, Turanyi T (1985) Principal component analysis of kinetic-models. Int J Chem Kinet 17:55–81

  89. 89.

    Turanyi T (1990) Reduction of large reaction-mechanisms. New J Chem 14:795–803

  90. 90.

    Massias A, Diamantis D, Mastorakos E, Goussis D (1999) An algorithm for the construction of global reduced mechanisms with CSP data. Combust Flame 117(4):685–708. ISSN 0010-2180. https://doi.org/10.1016/S0010-2180(98)00132-1

  91. 91.

    Huang H, Fairweather M, Griffiths J, Tomlin A, Brad R (2005) A systematic lumping approach for the reduction of comprehensive kinetic models. Proc Combust Inst 30(1):1309–1316. ISSN 1540-7489. https://doi.org/10.1016/j.proci.2004.08.001

Download references

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development (CNPq - Brazil) and by PRONII, Conacyt, Paraguay and Conicet, Argentina (postdoctoral scholarship). The authors would like to thank Pascal Dievart (ParisTech, France) for providing his methyl-decanoate model data, and Hernando Maldonado (Centrale Supelec, France) for his helpful collaboration in the project.

Author information

Correspondence to Rogério Gonçalves dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Fernando Marcelo Pereira, PhD.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alviso, D., Weyl Costa, M., Backer, L. et al. Chemical kinetic mechanism for diesel/biodiesel/ethanol surrogates using n-decane/methyl-decanoate/ethanol blends. J Braz. Soc. Mech. Sci. Eng. 42, 100 (2020). https://doi.org/10.1007/s40430-020-2186-9

Download citation

Keywords

  • Chemical kinetic mechanism
  • n-Decane
  • Methyl-decanoate
  • Ethanol
  • Auto-ignition
  • Laminar flame speed