Advertisement

Static loads evaluation in a flexible aircraft using high-fidelity fluid–structure iteration tool (E2-FSI): extended version

Abstract

This paper presents a fluid–structure iteration method applied as a study case to a conventional transport aircraft with wing aspect ratio of 12. It evaluates the nonlinear structure effect on the calculation of static limit loads. The numerical tool presented herein is named E2-FSI, which stands for nonlinear high-fidelity static fluid–structure iteration, developed for high flexibility static aeroelastic evaluations. A discussion about the use and the applicability of high-fidelity static fluid–structure iteration for the calculation of static loads is presented as part of the conclusion, for both current and future conventional transport aircraft.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Bradley MK, Droney CK (2011) Subsonic ultra green aircraft research: phase I final report. NASA

  2. 2.

    Afonso F, Vale J, Oliveira E, Lau F, Suleman A (2017) A review on non-linear aeroelasticity of high aspect-ratio wings. Prog Aerosp Sci 89:40–57

  3. 3.

    Tang D, Dowell EH (2001) Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA J 39(8):1430–1441

  4. 4.

    Lambert LA, Cooper JE, Nangia RK (2016) Buckling alleviation for joined-wing aircraft. J Aircr 53(3):811–821

  5. 5.

    Castellani M, Cooper JE, Lemmens Y (2017) Nonlinear static aeroelasticity of high-aspect-ratio-wing aircraft by finite element and multibody methods. J Aircr 54(2):548–560

  6. 6.

    Brooks TR, Martins JRRA (2016) High-fidelity aerostructural optimization of a high aspect ratio tow-steered composite wing. AIAA SciTech Forum, San Diego

  7. 7.

    Kenway GKW, Martins JRRA (2015) High-fidelity aerostructural optimization considering buffet onset. AIAA AVIATION Forum, Dallas

  8. 8.

    Huixue D, Zhichun Y, Yi L (2010) Accelerated loosely-coupled CFD/CSD method for nonlinear static aeroelasticity analysis. Aerospace Science and Technology, Elsevier Limited, Amsterdam

  9. 9.

    Hermanutz A, Hornung M (2017) High fidelity trim calculation under consideration of aeroelastic effects of a high aspect ration swept wing. IFASD 2017

  10. 10.

    Cesnik CES, Palacios R, Reichenbach EY (2014) Reexamined structural design procedures for very flexible aircraft. J Aircr 51(5):1580–1591

  11. 11.

    Kitson RC, Cesnik CES (2015) Aeroelastic modeling and simulation of flexible jet transport aircraft with high-aspect-ratio wings. International forum on aerolasticity and structural dynamics – IFASD at Saint Petersburg, Russia

  12. 12.

    Bartels RE, Scott RC, Funk CJ, Allen TJ, Sexton BW (2014) Computed and experimental flutter/LCO onset for the boeing truss-braced wing wind-tunnel model. In: 32st AIAA

  13. 13.

    Bartels RE, Scott RC, Allen TJ, Sexton BW (2015) Aeroelastic analysis of SUGAR truss-braced wing wind-tunnel model using FUN3D and a nonlinear structural model. In: s.l.: 56th AIAA

  14. 14.

    Eberhardt S, Benedict K, Hedges L, Robinson A, Tinoco EN (2014) Inclusion of aeroelastic twist into the CFD analysis of the twin-engine NASA common research model. In: AIAA SciTech

  15. 15.

    Keye S, Rudnik R (2015) Validation of wing deformation simulations for the NASA CRM model using fluid–structure interaction computations. In: 53rd AIAA aerospace sciences meeting, AIAA SciTech Forum

  16. 16.

    NASA 6th AIAA CFD Drag Prediction Workshop. Available at: https://aiaa-dpw.larc.nasa.gov. Published on 2016. Accessed 03 June 2017

  17. 17.

    Bauchau OA, Hong CH (1988) Nonlinear composite beam theory. J Appl Mech Trans ASME 55(1):156–163

  18. 18.

    Levy R, Spillers WR (1995) Analysis of geometrically nonlinear structures. ISBN 978-94-017-0243-0. Chapman & Hall, New York

  19. 19.

    Verri AA, Morais KC, Bussamra FLS, Becker GG, Cesnik CES (2018) Static loads evaluation in a flexible aircraft using high fidelity fluid–structure iteration tool (E2-FSI). In: 31st congress of the international council of the aeronautical sciences—ICAS 2018

  20. 20.

    EMBRAER S/A Official Embraer website. Available at: https://embraer.com. Accessed 07 June 2018 at 16:00 h

  21. 21.

    Metacomp Metacomp Technologies. http://www.metacomptech.com. Accessed 24 May 2018 at 13:00 h

  22. 22.

    MSC Nastran software version 2016R1. http://www.mscsoftware.com/product/msc-nastran. Accessed 18 Jan 2017 at 7:00 h

  23. 23.

    Verri AA, Jorge CT, Bizarro AF, Bussamra FLS, Júnior HNS, Cesnik CES (2018) Multidisciplinary methods for wing flight shape analysis—effect of the geometric nonlinear structure for static pull-up. In: 31st congress of the international council of the aeronautical sciences—ICAS 2018

  24. 24.

    Vinberg EB (2003) A course in algebra, graduate studies in mathematics, vol 56. American Mathematical Society, Providence

  25. 25.

    CFD ++ User Manual, version 14.0. Metacomp Technologies, Agoura Hills, CA. 2016

  26. 26.

    Goldberg UC, Peroomian O, Chakravarthy SA (1998) Wall-distance free K-E model with enhanced near-wall treatment. Am Soc Mech Eng J Fluids Eng 120:457–462

  27. 27.

    Spalart PR, Allmaras SR (1994) A one-equation turbulence model for aerodynamic flows. In: Recherche Aerospatiale

  28. 28.

    Clarke AJ (1987) An introduction to aircraft buffet and buffeting. ESDU 87012

  29. 29.

    Harten A, Lax PD, Leer BV (1983) On upstream differencing and Godunov type methods for hyperbolic conservation laws. SIAM Rev 25(1):35–61

  30. 30.

    Tinoco EN, Brodersen OP, Keye S, Laflin KR, Feltrop E, Vassberg JC, Mani M, Rider B, Wahls RA, Morrison JH, Hue D, Roy CJ, Mavriplis DJ, Murayama M (2018) Summary data from the sixth AIAA CFD drag prediction workshop: CRM cases. J Aircr 55(4):1352–1379

  31. 31.

    MSC (2016) MSC Nastran 2016. Reference manual

  32. 32.

    Martins PHC, Bussamra FLS, Lucena Neto E (2017) Three dimensional hybrid-Trefftz stress finite elements for plates and shells. Int J Numer Methods Eng 1:1–21. https://doi.org/10.1002/nme.5715

  33. 33.

    MSC. MSC Nastran (2016) Nonlinear user’s guide SOL 400, 2016

Download references

Author information

Correspondence to Angelo A. Verri or Flávio L. S. Bussamra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: André Cavalieri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verri, A.A., Bussamra, F.L.S., de Morais, K.C. et al. Static loads evaluation in a flexible aircraft using high-fidelity fluid–structure iteration tool (E2-FSI): extended version. J Braz. Soc. Mech. Sci. Eng. 42, 79 (2020). https://doi.org/10.1007/s40430-019-2154-4

Download citation

Keywords

  • Aeroelasticity
  • Fluid–structure
  • Static loads
  • Structural analysis
  • High flexibility