Advertisement

Design and performance optimization of a very low head turbine with high pitch angle based on two-dimensional optimization

  • Mokhtar Mohammadi
  • Alireza RiasiEmail author
  • Ali Rezghi
Technical Paper
  • 52 Downloads

Abstract

Very low head (VLH) axial hydro turbines are efficient turbomachinery to harness energy from tidal or river currents and increase renewable energy penetration in the world’s electric power generation. In this paper, the initial design of a VLH turbine with high pitch blade is optimized. The class function/shape function transformation method is applied along with a coupling of XFOIL with a MATLAB code to find optimum blade profiles with minimum drag-to-lift ratio. SST kω turbulence model is implemented to solve three-dimensional (3D) continuity and RANS equations by considering homogeneous multiphase model with standard free surface flow. The numerical results are validated against available experimental measurements, and the optimization results are discussed. The numerical results indicated that efficiency and power of the VLH turbine at the design point increased by 2.4% and 7.7 kW, respectively. Analyzing pressure distribution on suction and pressure sides of runner blades showed no occurrence of cavitation in operating condition of the turbine.

Keywords

Turbine Very low head Airfoil Optimization CST 

List of symbols

C

Chord length (m)

CD

Drag coefficient

CL

Lift coefficient

Cs

Speed of sound

Cθ

Tangential component of absolute velocity (m s−1)

D

Drag force (N)

Dω

Cross-section diffusion term

g

Acceleration due to gravity (ms−2)

Gk

Generation of k

Gω

Generation of ω

H

Head parameter (m)

k

Turbulence kinetic energy

L

Lift force (N)

Mach

Mach number

n

Rotational speed (rpm)

Nb

Number of blades

Ns

Specific speed

P

Power (kW)

Δp

Pressure drop (Pa)

Q

Discharge (m3 s−1)

r

Radius (m)

Re

Reynolds number

S

Solidity

T

Torque (N m)

U

Blade linear velocity (m s−1)

ui

Velocity components (m s−1)

W

Flow speed (m s−1)

X

Horizontal coordinates of airfoil (m)

xi

x-, y-, and z-directions

y

Vertical coordinates of airfoil (m)

Yk

Dissipation of k due to turbulence

Yω

Dissipation of ω due to turbulence

Greek symbols

α

Absolute speed angle (°)

β

Relative speed angle (°)

μt

Turbulent viscosity

ξ

y/c

η

Efficiency (%)

ρ

Density (kg m−3)

Ψ

x/c

ω

Rotational speed or specific turbulence dissipation

Γk

Effective diffusivity for k

Γω

Effective diffusivity for ω

Subscripts

0

Stagnation condition

1, (3)

Runner inlet (validation case)

2, (4)

Runner exit (validation case)

Average vector

l

Lower surface

u

Upper surface

H

Hydraulic

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Market Report Series: Renewables (2018) https://www.iea.org/renewables2018/
  2. 2.
    Canadian Hydraulics Centre., National Research Council of Canada., Canada. Natural Resources Canada., CanmetENERGY (Canada), Assessment of Canada’s hydrokinetic power potential : phase I report—methodology and data review, Natural Resources Canada, 2010Google Scholar
  3. 3.
    Elbatran AH, Yaakob OB, Ahmed YM, Shabara HM (2015) Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: a review. Renew Sustain Energy Rev 43:40–50.  https://doi.org/10.1016/j.rser.2014.11.045 CrossRefGoogle Scholar
  4. 4.
    Penche C (2004) Guide on how to develop a small hydropower, chapter 1. The European Small Hydropower Association, BelgiumGoogle Scholar
  5. 5.
    Williamson SJ, Stark BH, Booker JD (2011) Low head pico hydro turbine selection using a multi-criteria analysis. World Renew Energy Congr.  https://doi.org/10.1016/j.renene.2012.06.020 CrossRefGoogle Scholar
  6. 6.
    Sotoude Haghighi MH, Mirghavami SM, Chini SF, Riasi A (2019) Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades. Renew Energy 135:266–276.  https://doi.org/10.1016/j.renene.2018.12.024 CrossRefGoogle Scholar
  7. 7.
    Fraser R, Deschênes C, O’Neil C, Leclerc M (2007) VLH: development of a new turbine for very low head sites. In: Proceedings of 15th waterpower, pp 1–9Google Scholar
  8. 8.
    Lautier P, O’Neil C, Deschenes C, Ndjana HJN, Fraser R, Leclerc M (2007) Variable speed operation of a new very low head hydro turbine with low environmental impact. In: 2007 IEEE Canada electrical power conference. IEEE, pp 85–90.  https://doi.org/10.1109/epc.2007.4520311
  9. 9.
    Lewis RI (1996) Turbomachinery performance analysis. Arnold, LondonGoogle Scholar
  10. 10.
    Janjua AB, Khalil MS (2013) Blade profile optimization of Kaplan turbine using CFD analysis. Mehran Univ Res J Eng Technol 45:559–574Google Scholar
  11. 11.
    Prasad V (2012) Numerical simulation for flow characteristics of axial flow hydraulic turbine runner. Energy Proc 14:2060–2065.  https://doi.org/10.1016/J.EGYPRO.2011.12.1208 CrossRefGoogle Scholar
  12. 12.
    Alexander KV, Giddens EP, Fuller AM (2009) Axial-flow turbines for low head microhydro systems. Renew Energy 34:35–47.  https://doi.org/10.1016/J.RENENE.2008.03.017 CrossRefGoogle Scholar
  13. 13.
    Singh P, Nestmann F (2009) Experimental optimization of a free vortex propeller runner for micro hydro application. Exp Therm Fluid Sci 33:991–1002.  https://doi.org/10.1016/J.EXPTHERMFLUSCI.2009.04.007 CrossRefGoogle Scholar
  14. 14.
    Dixon SL, Hall CA (2014) Fluid mechanics and thermodynamics of turbomachinery, chapters 2, 6, and 9, 7th edn. Elsevier, Amsterdam.  https://doi.org/10.1016/c2011-0-05059-7 CrossRefGoogle Scholar
  15. 15.
    Muis A, Sutikno P (2014) Design and simulation of very low head axial hydraulic turbine with variation of swirl velocity criterion. Int J Fluid Mach Syst 7:68–79.  https://doi.org/10.5293/IJFMS.2014.7.2.068 CrossRefGoogle Scholar
  16. 16.
    Hoghooghi H, Durali M, Kashef A (2018) A new low-cost swirler for axial micro hydro turbines of low head potential. Renew Energy 128:375–390.  https://doi.org/10.1016/j.renene.2018.05.086 CrossRefGoogle Scholar
  17. 17.
    Sutikno P, Adam IK (2011) Design, simulation and experimental of the very low head turbine with minimum pressure and free vortex criterions. Int J Mech Mech Eng 11:9–15Google Scholar
  18. 18.
    Banaszek M, Tesch K (2010) Rotor blade geometry optimization in Kaplan turbine. Sci Bull Acad Comput Cent Gdansk 14:209–225Google Scholar
  19. 19.
    Luo X, Zhu G, Feng J (2014) Multi-point design optimization of hydrofoil for marine current turbine. J Hydrodyn Ser B 26:807–817.  https://doi.org/10.1016/S1001-6058(14)60089-5 CrossRefGoogle Scholar
  20. 20.
    Hothersall R (2004) Hydrodynamic design guide for small Francis and propeller turbines, chapters 2, 3, and 10. UNIDO, ViennaGoogle Scholar
  21. 21.
    Muis A, Sutikno P, Soewono A, Hartono F (2015) Design optimization of axial hydraulic turbine for very low head application. Energy Proc 68:263–273.  https://doi.org/10.1016/J.EGYPRO.2015.03.255 CrossRefGoogle Scholar
  22. 22.
    Randelhoff J (2000) Optimisation and design of two micro-hydro turbines for medium and low head applications. University of Natal, DurbanGoogle Scholar
  23. 23.
    Gōvinda Rāu NS (1983) Fluid flow machines. Tata McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Nguyen C (2005) Turbulence modeling, 1st edn. MIT, Cambridge, pp 1–6Google Scholar
  25. 25.
    ANSYS® (2013) Academic Research, Release 15.0, Help System, Coupled Field Analysis Guide, ANSYS, IncGoogle Scholar
  26. 26.
    Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605.  https://doi.org/10.2514/3.12149 CrossRefGoogle Scholar
  27. 27.
    Talukdar PK, Sardar A, Kulkarni V, Saha UK (2018) Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers Manag 158:36–49.  https://doi.org/10.1016/j.enconman.2017.12.011 CrossRefGoogle Scholar
  28. 28.
    Thakur N, Biswas A, Kumar Y, Basumatary M (2018) CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design. Chin J Chem Eng.  https://doi.org/10.1016/j.cjche.2018.11.014 CrossRefGoogle Scholar
  29. 29.
    Derakhshan S, Ashoori M, Salemi A (2017) Experimental and numerical study of a vertical axis tidal turbine performance. Ocean Eng 137:59–67.  https://doi.org/10.1016/j.oceaneng.2017.03.047 CrossRefGoogle Scholar
  30. 30.
    Kulfan BM (2008) Universal parametric geometry representation method. J Aircr 45:142–158.  https://doi.org/10.2514/1.29958 CrossRefGoogle Scholar
  31. 31.
    Kulfan BM, Bussoletti JE, Airplanes PC (2006) Fundamental parametric geometry representations for aircraft component shapes. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conferenceGoogle Scholar
  32. 32.
    Kulfan B (2007) A universal parametric geometry representation method—“CST”. In: 45th AIAA aerospace science meeting and exhibit, Nevada, USA, pp 1–36.  https://doi.org/10.2514/6.2007-62
  33. 33.
    Kulfan BM (2010) Recent extensions and applications of the ‘CST’ universal parametric geometry representation method. Aeronaut J 114:157–176.  https://doi.org/10.1017/S0001924000003614 CrossRefGoogle Scholar
  34. 34.
    Vu NA, Lee JW, Shu JI (2013) Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance. Chin J Aeronaut 26:1–8.  https://doi.org/10.1016/j.cja.2012.12.008 CrossRefGoogle Scholar
  35. 35.
    Pathike P, Katpradit T, Chaitep PTS (2012) Original optimum shape of airfoil for small horizontal-axis wind turbine airfoil geometry. J Sci Technol 31:1–6Google Scholar
  36. 36.
    Lane KA, Marshall DD (2009) A surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology. In: 47th AIAA aerospace science meeting including new horizons forum aerospace exposition, Florida, USAGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Marine and Hydrokinetic Energy Laboratory, School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations