Advertisement

Simple bidirectional linear ultrasonic motor driven by single-phase signal

  • Pingqing FanEmail author
  • Chaodong Li
Technical Paper
  • 16 Downloads

Abstract

A novel standing wave linear ultrasonic motor with a single source of sinusoidal wave is presented for exciting first-order longitudinal and second-order bending coupling working modes. First, on the basis of a kinematics analysis of the composite piezoelectric beam, the initial motor structure size is created, and the frequency difference of the two working modes of the motor with the initial sizes is 10,950.8 Hz. Second, the initial motor design is optimized according to the subproblem approximation algorithm to obtain the final motor size. The frequency difference in the optimized motor becomes 121.2 Hz. Third, transient analysis of the optimized motor is carried out, and the motion trajectory of the driving foot is an oblique ellipse. Switching the drive electrodes can realize the bidirectional movement of the motor. Finally, the motor prototype is fabricated, and its vibration characteristics and mechanical properties are tested. The maximum no-load motor speed at 96.6 kHz is 168.5 mm/s. The performance in the forward and backward directions is identical according to a test of no-load velocity versus voltage. With 150 Vpp voltage and 10 N preload, the motor’s maximum output thrust is approximately 0.9 N with a moving speed of 16.6 mm/s at 96.6 kHz. The overall motor mass is approximately 3.4 g. Thus, the thrust-to-weight ratio reaches 27.01.

Keywords

Single phase Linear ultrasonic motor Optimization analysis Subproblem approximation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51577112 and No. 51605271).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

References

  1. 1.
    Oh S, Takemura K (2014) Development of robot finger using ultrasonic motors driven by superimposed signal input. In: IEEE Ultrasonics Symposium, pp 2490–2493Google Scholar
  2. 2.
    Qun Z, Cong L, Jian Z et al (2017) Synchronized motion control and precision positioning compensation of a 3-DOFs macro-micro parallel manipulator fully actuated by piezoelectric actuators. Smart Mater Struct 26(11):1–15Google Scholar
  3. 3.
    Uchino K (1998) Piezoelectric ultrasonic motors: overview. Smart Mater Struct 7(3):273CrossRefGoogle Scholar
  4. 4.
    Wallaschek J (1995) Piezoelectric ultrasonic motors. J Intell Mater Syst Struct 6(1):71–83CrossRefGoogle Scholar
  5. 5.
    Su H, Zervas M, Cole G A et al (2011) Real-time MRI-guided needle placement robot with integrated fiber optic force sensing. In: IEEE international conference on robotics and automation (ICRA), pp 1583–1588Google Scholar
  6. 6.
    Shi Y, Zhao C (2012) Simple new ultrasonic piezoelectric actuator for precision linear positioning. J Electroceramics 28(4):233–239MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kurosawa MK, Kodaira O, Tsuchitoi Y et al (1998) Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans Ultrason Ferroelectr 45(5):1188–1195CrossRefGoogle Scholar
  8. 8.
    Guo M, Dong S, Ren B et al (2010) A double-mode piezoelectric single-crystal ultrasonic micro-actuator. IEEE Trans Ultrason Ferroelectr 57(11):2596–2600CrossRefGoogle Scholar
  9. 9.
    Park T, Kim B, Kim MH et al (2002) Characteristics of the first longitudinal-fourth bending mode linear ultrasonic motors. Jpn J Appl Phys 41(11S):7139–7143CrossRefGoogle Scholar
  10. 10.
    Yun CH, Ishii T, Nakamura K et al (2001) A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped Langevin type transducer. Jpn J Appl Phys 40(5S):3773–3776CrossRefGoogle Scholar
  11. 11.
    He S, Chen W, Tao X et al (1998) Standing wave bi-directional linearly moving ultrasonic motor. IEEE Trans Ultrason Ferroelectr 45(5):1133–1139CrossRefGoogle Scholar
  12. 12.
    Friend JR, Satonobu J, Nakamura K et al (2003) A single-element tuning fork piezoelectric linear actuator. IEEE Trans Ultrason Ferroelectr 50(2):179–186CrossRefGoogle Scholar
  13. 13.
    Friend J, Gouda Y, Nakamura K et al (2006) A simple bidirectional linear microactuator for nanopositioning-the “Baltan” microactuator. IEEE Trans Ultrason Ferroelectr 53(6):1160–1168CrossRefGoogle Scholar
  14. 14.
    Flueckiger M, Fernandez L J, Perriard Y (2007) P5G-1 optimization of a single phase ultrasonic linear motor. In: Proceedings of the 2007 IEEE international ultrasonics symposium, pp 2327–2330Google Scholar
  15. 15.
    Tamura H, Shibata K, Aoyagi M et al (2008) Single phase drive ultrasonic motor using LiNbO3 rectangular vibrator. Jpn J Appl Phys 47(5S):4015–4020CrossRefGoogle Scholar
  16. 16.
    He S, Chiarot PR, Park S (2011) A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Trans Ultrason Ferroelectr 58(5):1049–1061CrossRefGoogle Scholar
  17. 17.
    Park S, He S (2012) Standing wave brass-PZT square tubular ultrasonic motor. Ultrasonics 52(7):880–889CrossRefGoogle Scholar
  18. 18.
    Chang LK, Tsai MC (2016) Design of single-phase driven screw-thread-type ultrasonic motor. Rev Sci Instrum 87(5):055002CrossRefGoogle Scholar
  19. 19.
    Li C, Lu CY, Ma YX (2017) A piezoelectric motor driven by a single-phase signal. J VibroEng 19(4):2645–2653CrossRefGoogle Scholar
  20. 20.
    Vyshnevsky O, Kovalev S, Wischnewskiy W (2005) A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors. IEEE Trans Ultrason Ferroelectr 52(11):2047–2053CrossRefGoogle Scholar
  21. 21.
    Hsiao SW, Tsai MC (2010) Single-phase drive linear ultrasonic motor with perpendicular electrode vibrator. Jpn J Appl Phys 49(2R):024201CrossRefGoogle Scholar
  22. 22.
    Yokoyama K, Tamura H, Masuda K et al (2013) Single-phase drive ultrasonic linear motor using a linked twin square plate vibrator. Jpn J Appl Phys 52(7S):07HE03CrossRefGoogle Scholar
  23. 23.
    Chen Z, Li X, Ci P et al (2015) A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes. Rev Sci Instrum 86(3):035002CrossRefGoogle Scholar
  24. 24.
    Ma Y, Choi M, Uchino K (2016) Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates. Rev Sci Instrum 87(11):115004CrossRefGoogle Scholar
  25. 25.
    Pan Q, Miao E, Wu B et al (2017) Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator. Rev Sci Instrum 88(7):075002CrossRefGoogle Scholar
  26. 26.
    Dabbagh V, Sarhan AA, Akbari J et al (2017) Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source. Precis Eng 48(2017):172–180CrossRefGoogle Scholar
  27. 27.
    Liu Y, Shi S, Li C et al (2016) A novel standing wave linear piezoelectric actuator using the longitudinal-bending coupling mode. Sensors Actuators A Phys 251(2016):119–125CrossRefGoogle Scholar
  28. 28.
    Liu Y, Shi S, Chen Li C et al (2016) Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet. Ultrasonics 84(2018):81–86Google Scholar
  29. 29.
    Zhao CS (2011) Ultrasonic motors, technologies and applications. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Inman DJ, Cudney HH (1998) Structural and machine design using piezoceramic materials: a guide for structural design engineers. University of Michigan, Ann ArborGoogle Scholar
  31. 31.
    Shi Y, Zhao C (2011) A new standing-wave-type linear ultrasonic motor based on in-plane modes. Ultrasonics 51(4):397–404CrossRefGoogle Scholar
  32. 32.
    Zhang L, He B, Yuan X (1994) Iterative lanczos-reduced method for sensitivity analysis in finite element model updating. J Vib Eng Technol 7(3):230–234Google Scholar
  33. 33.
    Dong Z, Yang M (2017) Optimal design of a double-vibrator ultrasonic motor using combination method of finite element method, sensitivity analysis and adaptive genetic algorithm. Sensors Actuators A Phys 266(2016):1–8CrossRefGoogle Scholar
  34. 34.
    Allemang R J, Brown D L (1982) A correlation coefficient for modal vector analysis. In: Proceedings of the 1st international modal analysis conference vol 1, pp 110–116Google Scholar
  35. 35.
    Germano C (1971) Flexure mode piezoelectric transducers. Trans Audio Electroacoust 19(1):6–12CrossRefGoogle Scholar
  36. 36.
    Sharp SL, Paine JSN, Blotter JD (2010) Design of a linear ultrasonic piezoelectric motor. J Intell Mater Syst Struct 21(21):961–973CrossRefGoogle Scholar
  37. 37.
    Djojodihardjo H, Jafari M, Wiriadidjaja S et al (2015) Active Vibration Suppression of an elastic piezoelectric sensor and actuator fitted cantilevered beam configurations as a generic smart composite structure. Compos Struct 132(2015):848–863CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical and Automotive EngineeringShanghai University of Engineering ScienceShanghaiChina
  2. 2.Automotive Engineering CollegeShanghai UniversityShanghaiChina

Personalised recommendations