Advertisement

Finite element method for incompressible viscous flow with immersed pressure jumps with applications to actuator disks and microfluidics

  • Roberto AusasEmail author
  • Gustavo Buscaglia
  • Vitoriano Ruas
Technical Paper
  • 48 Downloads

Abstract

We propose a finite element method for the solution of viscous incompressible flow problems with singular forces at immersed interfaces. The method combines the algebraic subgrid scale method with a pressure jump stabilization. It consists of the addition, to the continuity equation, of a term weighting the residual of the pressure jump. This term enhances the stability irrespective of possible badly shaped intersections of the interface with the finite elements. We assess the new method by comparing with the unstabilized case showing improved accuracy and robustness. The examples consider immersed actuator disk problems and one application to thermocapillary convection.

Keywords

Finite elements Incompressible viscous flows Navier–Stokes Pressure jump Immersed boundary Surface tension 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support received from both FAPESP (Grants 2014/19249-1, 2013/07375-0-Cepid-CeMEAI) and CNPq (Grants 307996/2008-5, 447607/2014-6 and 308728/2013-0).

References

  1. 1.
    Réthoré P-E, van der Laan P, Troldborg N, Zahle F, Sørensen N (2014) Verification and validation of an actuator disc model. Wind Energy 17:919–937CrossRefGoogle Scholar
  2. 2.
    Wmj B, Harrison M, Bahaj A (2013) Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines. Trans R Soc A 371:20120293CrossRefGoogle Scholar
  3. 3.
    Ammara I, Leclerc C, Masson C (2002) A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms. J Solar Energy Eng 124:345–356CrossRefGoogle Scholar
  4. 4.
    Minev PD, Chen T, Nandakumar K (2003) A finite element technique for multifluid incompressible flow using Eulerian grids. J Comput Phys 187:255–273MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gross S, Reusken A (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. J Comput Phys 224:40–58MathSciNetCrossRefGoogle Scholar
  6. 6.
    Reusken A (2008) Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput Vis Sci 11:293–305MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coppola-Owen AH, Codina R (2005) Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Methods Fluids 49:1287–1304MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ausas R, Buscaglia G, Idelsohn S (2012) A new enrichment space for discontinuous pressures. Int J Numer Methods Fluids 70(7):829–850CrossRefGoogle Scholar
  9. 9.
    Kamran K, Rossi R, Oñate E (2015) A locally extended finite element method for the simulation of multi-fluid flows using the particle level set method. Comput Methods Appl Mech Eng 294:1–18MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ausas R, Souza F, Buscaglia G (2010) An improved finite element space for discontinuous pressures. Comput Methods Appl Mech Eng 199:1019–1031MathSciNetCrossRefGoogle Scholar
  11. 11.
    Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62:328–341MathSciNetCrossRefGoogle Scholar
  12. 12.
    Burman E, Hansbo P (2014) Fictitious domain methods using cut elements: III. A stabilized Nitsche method for stokes’ problem. ESAIM Math Model Numer Anal 48:859–874MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hansbo P, Larson MG, Zahedi S (2014) A cut finite element method for a stokes interface problem. Appl Numer Math 85:90–114MathSciNetCrossRefGoogle Scholar
  14. 14.
    Buscaglia G, Ruas V (2014) Approximation of the multi-dimensional Stokes system with embedded pressure discontinuities. Adv Comput Math 41:599–634MathSciNetCrossRefGoogle Scholar
  15. 15.
    Buscaglia G, Ruas V (2015) Finite element methods for the Stokes system with interface pressure discontinuities. IMA J Numer Anal 35:220–238MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hughes TJR, Franca L, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99CrossRefGoogle Scholar
  17. 17.
    Douglas J, Wang J (1989) An absolutely stabilized finite element method for the stokes problem. Math Comput 52–186:495–508MathSciNetCrossRefGoogle Scholar
  18. 18.
    Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190:2681–2706MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pommerenke C (1992) Boundary behaviour of conformal maps. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Adams RA (1975) Sobolev spaces. Academic Press, New YorkzbMATHGoogle Scholar
  21. 21.
    Ciarlet PG (1978) The finite element method for elliptic problems. North Holland, AmsterdamzbMATHGoogle Scholar
  22. 22.
    Buscaglia G, Ausas RF (2011) Variational formulations for surface tension, capillarity and wetting. Comput Methods Appl Mech Eng 200:3011–3025MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cartan E (1928) Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, PariszbMATHGoogle Scholar
  24. 24.
    Girault V, Raviart PA (1986) Finite element methods for Navier–Stokes equations. Springer, New YorkCrossRefGoogle Scholar
  25. 25.
    Mikkelsen R (2003) Actuator disc methods applied to wind turbines, Ph.D. thesis, Technical University of DenmarkGoogle Scholar
  26. 26.
    Balasubramaniam R, An-Ti Chai (1987) Thermocapillary migration of droplets: an exact solution for small Marangoni numbers. J Colloid Interf Sci 119:531CrossRefGoogle Scholar
  27. 27.
    Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013CrossRefGoogle Scholar
  28. 28.
    Idelsohn SR, Gimenez JM, Marti J, Nigro NM (2017) Elemental enriched spaces for the treatment of weak and strong discontinuous fields. Comput Methods Appl Mech Eng 313:535–559MathSciNetCrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Sorbonne Université, UMR 7190, CNRSInstitut Jean Le Rond d’AlembertParisFrance
  3. 3.Department of Mechanical EngineeringCNPq Research grant holder, PUC-RioRio de JaneiroBrazil

Personalised recommendations