Advertisement

Mechanical resistance of stepped lamination defects in a welded section of oil and gas pipeline: a finite element analysis

  • G. TeránEmail author
  • S. Capula-Colindres
  • J. C. Velázquez
  • D. Angeles-Herrera
  • O. G. Súchil
Technical Paper
  • 34 Downloads

Abstract

The mechanical resistance of API 5L X52 steel with stepping lamination in the base metal (BM), heat affected zone (HAZ) and welding bead (WB) was studied by using the finite element method (FEM) in the present work. Both internal working pressure in the pipelines and internal pressure in the stepping laminations were studied to analyze the mechanical behavior of the pipelines. 3D FEM models and kinematic hardening were activated in the software used, while tests for the mechanical properties (true stress–strain curve) of BM, HAZ and WB were also conducted. The results demonstrated that stepping laminations in the BM–HAZ–WB zone reduced the ability to support internal pressure; therefore, the failure pressure (Pf) is also reduced. Pipeline failures occurred when the Von Mises stresses reached or exceeded the ultimate tensile stress (σUTS) of the material in the outer and inner wall and the stepping lamination sizes were too large. Failure in pipelines with stepping laminations occurred on the left side of the crack on the outer wall of the BM–HAZ zone; on the inner right side of the stepping laminations, the failure takes place on the inner wall in the WB.

Keywords

Stepping lamination Pipeline Carbon steel Finite element method and crack 

Abbreviations

BM

Base metal

FEM

Finite element method

H

Atomic hydrogen

HAZ

Heat affected zone

HIC

Hydrogen-induced cracking

WB

Welding bead

List of symbols

Pf

Failure pressure

σYS

Yield stress

σUTS

Ultimate tensile stress

2a

Crack length

Δt

% stepping

Notes

Acknowledgements

The authors thank ESIQIE-IPN, CIC-IPN, ITSTA and CONACYT for the financial and material support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regrading the publication of his paper.

References

  1. 1.
    Fontana MG (1987) Corrosion engineering. Mc Graw Hill, New YorkGoogle Scholar
  2. 2.
    Still JR (2004) Understanding hydrogen failures of ferritic welds. Weld J 83(1):26–29MathSciNetGoogle Scholar
  3. 3.
    Traidia A, Alfano M, Lubineau G, Duval S, Sherik A (2012) An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines. Int J Hydrog Energy 37(21):16214–16230.  https://doi.org/10.1016/j.ijhydene.2012.08.046 CrossRefGoogle Scholar
  4. 4.
    Ossai CI, Boswell B, Davies IJ (2015) Pipeline failures in corrosive enviroments: a conceptual analysis of trend and effects. Eng Fail Anal 53:36–58.  https://doi.org/10.1016/j.engfailanal.2015.03.004 CrossRefGoogle Scholar
  5. 5.
    Ravi K, Ramaswamy V, Namboodhiri TKG (1990) Hydrogen sulphide resistance of high sulphur microalloyed steels. Mater Sci Eng A 129(1):87–97.  https://doi.org/10.1016/0921-5093(90)90347-6 CrossRefGoogle Scholar
  6. 6.
    Venegas V, Caleyo F, Baudin T, Espina-Hernández JH, Hallen JM (2011) On the role of crystallographic texture in mitigating hydrogen induced cracking in pipelines steels. Corros Sci 53(12):4204–4212.  https://doi.org/10.1016/j.corsci.2011.08.031 CrossRefGoogle Scholar
  7. 7.
    González JL, Ramírez R, Hallen JM, Guzmán RA (1997) Hydrogen-induced crack growth rate in steel plates exposed to sour environments. Corrosion 53(12):935–943.  https://doi.org/10.5006/1.3290278 CrossRefGoogle Scholar
  8. 8.
    Iino M (1978) The extension of hydrogen blister-crack array in linepipe steels. Metall Mater Trans A 9(11):1581–1590CrossRefGoogle Scholar
  9. 9.
    Ramírez JA (2003) Susceptibilidad al agrietamiento inducido por hidrógeno absorbido, de la soldadura y zona afectada por el calor, en aceros para transporte de hidrocarburos. ESIQIE-Intituto Politécnico Nacional, MéxicoGoogle Scholar
  10. 10.
    Ikeda A, Morita Y, Terasaki F, Takeyama M (1977) On the hydrogen induced cracking of line-pipe steel under wet hydrogen sulfide environment. Second Int Congr Hydrog Metals 47A:1–8Google Scholar
  11. 11.
    Morales A, González JL, Morales A (2009) Behavior of coplanar and non-coplanar laminations in API5L X52 simulated by finite elements. Inf Tecnol 120(5):97–105Google Scholar
  12. 12.
    Morales A, González JL, Hallen JM (2004) Mechanical behavior of non-coplanar cracks in pipes applying the finite elements method. Tnf Tecnol 115(6):29–34Google Scholar
  13. 13.
    Gonzalez JL, Morales A (2008) Analysis of laminations in X52 steel pipes by nonlinear by finite element. J Press Vessel Technol 130(2):021706-1-7CrossRefGoogle Scholar
  14. 14.
    McAllister EW (2009) Pipelines rules of thumb handbook, 7th edn. Gulf Professional Publishing, HoustonGoogle Scholar
  15. 15.
    Kou S (2003) Welding metallurgy, 2nd edn. Wiley-Interscience, HobokenGoogle Scholar
  16. 16.
    Easterling K (1992) Introduction to the physical metallurgy of welding, 2nd edn. Butterworth Heinemann, OxfordGoogle Scholar
  17. 17.
    Chen CC, Pollack A (1993) Influence of welding on steel weldment properties, welding, brazing and soldering, Handbook, vol 6. ASM International, RussellGoogle Scholar
  18. 18.
    Azevedo CRF (2007) Failure analysis of a crude pipeline. Eng Fail Anal 14(6):978–994.  https://doi.org/10.1016/j.engfailanal.2006.12.001 CrossRefGoogle Scholar
  19. 19.
    Ramírez JA, González JL (2003) Hydrogen induced cracking of welds in steel pipelines, design and analysis of pressure vessels and piping: implementation of ASME B31, fatigue, ASME section VIII, and buckling analyses, PVP2003-2182. ASME, New YorkGoogle Scholar
  20. 20.
    González JL, Hallen JM (1998) Mecánica de fractura en ductos de recolección y transporte de hidrocarburos. 3er Congreso de Ductos PEMEX, 183-191, MéxicoGoogle Scholar
  21. 21.
    Yan C, Liu C, Yan B (2014) 3D modeling of the hydrogen distribution in X80 pipeline steel welded joints. Comput Mater Sci 83:158–163.  https://doi.org/10.1016/j.commatsci.2013.11.007 CrossRefGoogle Scholar
  22. 22.
    Kittel J, Ropital F, Pellier J (2008) Effect of membrane thickness on hydrogen permeation in steels during wet hydrogen sulfide exposure. Corrosion 64(10):788–799.  https://doi.org/10.5006/1.3278446 CrossRefGoogle Scholar
  23. 23.
    ANSYS Release 15, 2015Google Scholar
  24. 24.
    Terán G, Capula-Colindres S, Velázquez JC, Angeles-Herrera D, Torres-Santillán E (2019) Influence of the corrosion defect size on the welding bead, heat affected zone and base metal in pipeline failure pressure estimation: a finite element study. J Press Vessel Techol ASME 141(3):031001-1–031001-8.  https://doi.org/10.1115/1.4042908 CrossRefGoogle Scholar
  25. 25.
    Terán G, Capula-Colindres S, Velázquez JC, Fernández-Cueto MJ, Angeles-Herrera D, Herrera-Hernández H (2017) Failure pressure estimations for pipes with combined corrosion defects on the external surface: a comparative study. Int J Electrochem Sci 12:10152–10176.  https://doi.org/10.20964/2017.11.86 CrossRefGoogle Scholar
  26. 26.
    Alvaro A, Olden V, Akselsen OM (2013) 3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel. Int J Hydrog Energy 38:7539–7549.  https://doi.org/10.1016/j.ijhydene.2013.02.146 CrossRefGoogle Scholar
  27. 27.
    Madeci E, Guven I (2006) The finite element method and applications in engineering using Ansys. Springer, New YorkGoogle Scholar
  28. 28.
    Chong TVS, Kumar SB, Lai MO, Loh WL (2015) Fracture capacity of modern pipeline girth welds with 3D surface cracks under extreme operation conditions. Eng Fract Mech 146:139–160.  https://doi.org/10.1016/j.engfracmech.2015.07.032 CrossRefGoogle Scholar
  29. 29.
    Yi D, Xiao ZM, Idapalapati S, Kumar SB (2012) Fracture analysis of girth welded pipelines with 3D embedded cracks subjected to biaxial loading conditions. Eng Fract Mech 96:570–587.  https://doi.org/10.1016/j.engfracmech.2012.09.005 CrossRefGoogle Scholar
  30. 30.
    Meyers MA, Chawla KK (1999) Mechanical behavior of materials. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  31. 31.
    Dowling NE (1999) Mechanical behavior of materials, engineering methods for deformation, fracture, and fatigue, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  32. 32.
    Olden V, Alvaro A, Akselsen OM (2012) Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint: experiments and FE simulations. Int J Hydrog Energy 37:11474–11486.  https://doi.org/10.1016/j.ijhydene.2012.05.005 CrossRefGoogle Scholar
  33. 33.
    Alvaro A, Olden V, Akselsen OM (2014) 3D cohesive modelling of hydrogen embrittlement on the heat affected zone of an X70 pipeline steel: part II. Int J Hydrog Energy 39:3528–3541.  https://doi.org/10.1016/j.ijhydene.2013.12.097 CrossRefGoogle Scholar
  34. 34.
    Anderson TL (2005) Fracture mechanics, fundamentals and applications, 4th edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  35. 35.
    API 579-1/ASME FFS-1 (2007) Fitness-for-service, USAGoogle Scholar
  36. 36.
    Fernandez-Cueto M, Capula-Colindres S, Angeles-Herrera D, Velazquez JC, Teran G (2018) Analysis of 3D planar laminations in a welded section of API 5L X52 applying the finite element method. Soldagem Insp 23(1):17–31.  https://doi.org/10.1590/0104-9224/si2301.03 CrossRefGoogle Scholar
  37. 37.
    Fernandez-Cueto M, González-Velázquez JL (2011) Análisis del comportamiento elasto-plástico de grietas interna presurizadas en uniones soldadas de tubos de acero bajo carbon. Rev Fac Ing Univ Antioq 59:59–65Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Química Industrial, ESIQIEInstituto Politécnico NacionalMexico CityMexico
  2. 2.Laboratorio de Microtecnología y Sistemas EmbebidosCentro de Investigación en Computación del Instituto Politécnico NacionalMexico CityMexico
  3. 3.Posgrado e InvestigaciónInstituto Tecnológico Superior de TANTOYUCA (ITSTA)TantoyucaMexico

Personalised recommendations