Advertisement

Study on vacuum membrane distillation coupled with mechanical vapor recompression system for the concentration of sulfuric acid solution

  • Zetian Si
  • Dong HanEmail author
  • Jiming Gu
  • Junjie Chen
  • Mingrui Zheng
  • Yan Song
  • Ning Mao
Technical Paper
  • 42 Downloads

Abstract

This paper presents a new vacuum membrane distillation (VMD) coupled with mechanical vapor recompression system for the concentration of sulfuric acid solution; the mathematical models based on the mass and energy balances in each part of the system are established. The influences of the corresponding operating parameters including feed concentration, feed temperature, feed velocity and permeate-side absolute pressure on membrane flux are investigated and discussed. The membrane flux increases with the increase in feed temperature and velocity, but it decreases with the increase in feed concentration and permeate-side absolute pressure. Furthermore, the energy consumption of the proposed system is explored through analyzing the influences from key factors, including boiling point elevation, temperature and concentration polarization and heat transfer temperature difference of heat exchanger on power consumption of compressor. Compared with the conventional VMD system and multi-effect MD system, the proposed system can save 77.6% and 20.4% energy due to a significant improvement in thermal efficiency by recovering the latent heat of vaporization. Eventually, an economic evaluation of the proposed system is performed comprehensively and the most optimized compression ratio of compressor can be obtained, which can guarantee the lowest energy consumption and total annual cost. Therefore, these results can provide significant references for the implementation and further optimization of the proposed system in the future.

Keywords

Vacuum membrane distillation Mechanical vapor recompression Membrane flux Energy consumption Economic evaluation 

List of symbols

A

Heat transfer area of heat exchanger (m2)

Af

Effective membrane area (m2)

C

Cost ($)

Cp

Heat capacity of feed solution (kJ kg−1 °C−1)

d

Flow channel hydraulic diameter (m)

DL

Diffusion coefficient of the solute in solvent (m2 s−1)

e1, e2, e3, e4

The calculation precision

F

Mass flow rate (kg s−1)

h

Enthalpy (kJ kg−1)

hf

Heat transfer coefficient at the feed solution boundary layer (W m−2 °C−1)

i

Interest rate

k

Isentropic exponent

Kf

Solute mass transfer coefficient across thermal boundary layer (m s−1)

Km

Mass transfer coefficient across the membrane pores (kg m−2 s−1 Pa−1)

M

Water molecular mass

N

Membrane flux (kg m−2 h−1)

Nu

Nusselt number

Pm

Mean pressure of membrane pore (kPa)

PP

Pressure in the permeate side (kPa)

Pr

Prandtl number

Qf

Heat transfers from the bulk solution to the membrane surface through the boundary layer (W m−2)

Qm

Heat transfers from the membrane surface to permeate side through the membrane (W m−2)

r

Pore size (m)

R

Universal gas constant (J mol−1 °C−1)

Re

Reynolds number

Sc

Schmidt number

Sh

Sherwood number

Tf

Temperature of the feed bulk solution (°C)

Tfm

Temperature at the feed membrane surface (°C)

Tm

Mean temperature of membrane pore (°C)

U

Overall coefficient of heat transfer of heat exchanger (W m−2 °C−1)

W

Power (W)

x

Solute mass fraction of the solution (%)

y, z, q

Characteristic constants of the solution flow regime

ΔH

Latent heat of vaporization (J kg−1)

ΔtLMTD

Logarithmic mean temperature difference of heat exchanger (°C)

Abbreviations

BPE

Boiling point elevation

CPC

Concentration polarization coefficient

IC

Investment cost ($)

MVR

Mechanical vapor recompression

M&S

Marshall and Swift index

OC

Operating cost ($)

PTFE

Polytetrafluoroethylene

TAC

Total annual cost ($)

TPC

Temperature polarization coefficient

VMD

Vacuum membrane distillation

Greek letters

γ

Mole fraction

δ

Thickness (m)

ε

Porosity

η

Efficiency

θ

Amortization year

λ

Thermal conductivity of feed solution (W m−1 °C−1)

μ

Dynamic viscosity of feed solution (Pa s−1)

ρ

Density (kg m−3)

τ

Tortuosity

φ

Amortization factor

ψ

Coefficient

Subscripts

B

Boundary layer

com

Compressor

ele

Electricity

eva

Evaporation

f

Feed side

fm

Membrane surface in feed side

hex

Heat exchanger

L

Liquid phase

m

Membrane

me

Mechanical

ms

Membrane separator

p

Pore, pressure, permeate side

sm

Saturated state at the membrane surface

sp

Saturated state in permeate side

th

Thermal

Notes

Acknowledgements

The authors acknowledge the financial support from the Fundamental Research Funds for the Central Universities (No. NP2018107) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0183).

Supplementary material

40430_2019_1967_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 29 kb)

References

  1. 1.
    De Toni A, Hayashi T, Schneider P (2013) A reactor network model for predicting NOx emissions in an industrial natural gas burner. J Braz Soc Mech Sci Eng 35(3):199–206.  https://doi.org/10.1007/s40430-013-0039-5 CrossRefGoogle Scholar
  2. 2.
    Han D, He WF, Yue C (2017) Study on desalination of zero-emission system based on mechanical vapor compression. Appl Energy 185:1490–1496.  https://doi.org/10.1016/j.apenergy.2015.12.061 CrossRefGoogle Scholar
  3. 3.
    Agrawal A, Sahu KK (2009) An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J Hazard Mater 171(1–3):61–75.  https://doi.org/10.1016/j.jhazmat.2009.06.099 CrossRefGoogle Scholar
  4. 4.
    Barbarossa V, Brutti S, Diamanti M (2006) Catalytic thermal decomposition of sulphuric acid in sulphur–iodine cycle for hydrogen production. Int J Hydrogen Energy 31(7):883–890.  https://doi.org/10.1016/j.ijhydene.2005.08.003 CrossRefGoogle Scholar
  5. 5.
    Huminicki DMC, Rimstidt JD (2008) Neutralization of sulfuric acid solutions by calcite dissolution and the application to anoxic limestone drain design. Appl Geochem 23(2):148–165.  https://doi.org/10.1016/j.apgeochem.2007.10.004 CrossRefGoogle Scholar
  6. 6.
    Silva JE, Paiva AP, Soares D (2005) Solvent extraction applied to the recovery of heavy metals from galvanic sludge. J Hazard Mater 120(1–3):113–118.  https://doi.org/10.1016/j.jhazmat.2004.12.008 CrossRefGoogle Scholar
  7. 7.
    Liang L, Han D (2009) Experimental study on mechanical vapor recompression system. Chem Ind Eng Pro 28:358–360.  https://doi.org/10.16085/j.issn.1000-6613.2009.s1.036 (In Chinese) CrossRefGoogle Scholar
  8. 8.
    Khalifa AE (2015) Water and air gap membrane distillation for water desalination–an experimental comparative study. Sep Purif Technol 141:276–284.  https://doi.org/10.1016/j.seppur.2014.12.007 CrossRefGoogle Scholar
  9. 9.
    Dao TD, Laborie S, Cabassud C (2016) Direct As (III) removal from brackish groundwater by vacuum membrane distillation: effect of organic matter and salts on membrane fouling. Sep Purif Technol 157:35–44.  https://doi.org/10.1016/j.seppur.2015.11.018 CrossRefGoogle Scholar
  10. 10.
    Mohamed ES, Boutikos P, Mathioulakis E (2017) Experimental evaluation of the performance and energy efficiency of a Vacuum Multi-Effect Membrane Distillation system. Desalination 408:70–80.  https://doi.org/10.1016/j.desal.2016.12.020 CrossRefGoogle Scholar
  11. 11.
    Zhang G, Zhang Q, Zhou K (1999) Study on concentrating sulfuric acid solution by vacuum membrane distillation. Journal of Central South University of Technology 6(2):99–102.  https://doi.org/10.1007/s11771-999-0007-5 CrossRefGoogle Scholar
  12. 12.
    Li X, Qin Y, Liu R (2012) Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation. Desalination 307:34–41.  https://doi.org/10.1016/j.desal.2012.08.023 CrossRefGoogle Scholar
  13. 13.
    He WF, Han D, Yue C (2015) A parametric study of a humidification dehumidification (HDH) desalination system using low grade heat sources. Energy Conv Manag 105:929–937.  https://doi.org/10.1016/j.enconman.2015.08.056 CrossRefGoogle Scholar
  14. 14.
    Kansha Y, Kishimoto A, Tsutsumi A (2012) Application of the self-heat recuperation technology to crude oil distillation. Appl Therm Eng 43(16):153–157.  https://doi.org/10.1016/j.applthermaleng.2011.10.022 CrossRefGoogle Scholar
  15. 15.
    Si Z, Han D, Song Y (2019) Experimental investigation on a combined system of vacuum membrane distillation and mechanical vapor recompression. Chem Eng Process 139:172–182.  https://doi.org/10.1016/j.cep.2019.04.007 CrossRefGoogle Scholar
  16. 16.
    Han D, He WF, Yue C (2014) Analysis of energy saving for ammonium sulfate solution processing with self-heat recuperation principle. Appl Therm Eng 73:641–649.  https://doi.org/10.1016/j.applthermaleng.2014.08.026 CrossRefGoogle Scholar
  17. 17.
    Nguyen NC, Chen SS, Ho ST (2018) Optimising the recovery of EDTA-2Na draw solution in forward osmosis through direct contact membrane distillation. Sep Purif Technol 198:108–112.  https://doi.org/10.1016/j.seppur.2017.02.001 CrossRefGoogle Scholar
  18. 18.
    Abu-Zeid MAER, Zhang Y, Dong H (2015) A comprehensive review of vacuum membrane distillation technique. Desalination 356:1–14.  https://doi.org/10.1016/j.desal.2014.10.033 CrossRefGoogle Scholar
  19. 19.
    Kim YD, Thu K, Choi SH (2015) Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination 367:161–171.  https://doi.org/10.1016/j.desal.2015.04.003 CrossRefGoogle Scholar
  20. 20.
    Xu J, Singh YB, Amy GL (2016) Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water. J Membr Sci 512:73–82.  https://doi.org/10.1016/j.memsci.2016.04.010 CrossRefGoogle Scholar
  21. 21.
    An B, Xu JL (2016) Investigation on a micro-pin-fin based membrane separator. Int J Heat Mass Transf 95:426–439.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.096 CrossRefGoogle Scholar
  22. 22.
    Nafey AS, Fath HES, Mabrouk AA (2008) Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process. Desalination 230:1–15.  https://doi.org/10.1016/j.desal.2007.08.021 CrossRefGoogle Scholar
  23. 23.
    Navarro-Amorós MA, Ruiz-Femenia R, Caballero JA (2013) A new technique for recovering energy in thermally coupled distillation using vapor recompression cycles. AIChE J 59(10):3767–3781.  https://doi.org/10.1002/aic.14137 CrossRefGoogle Scholar
  24. 24.
    Brückner S, Liu S, Miró L (2015) Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies. Appl Energy 151:157–167.  https://doi.org/10.1016/j.apenergy.2015.01.147 CrossRefGoogle Scholar
  25. 25.
    Luo H, Bildea CS, Kiss AA (2015) Novel heat-pump-assisted extractive distillation for bioethanol purification. Ind Eng Chem Res 54:2208–2213.  https://doi.org/10.1021/ie504459c CrossRefGoogle Scholar
  26. 26.
    Olujić Ž, Sun L, De Rijke A (2006) Conceptual design of an internally heat integrated propylene-propane splitter. Energy 31:3083–3096.  https://doi.org/10.1016/j.energy.2006.03.030 CrossRefGoogle Scholar
  27. 27.
    Saffarini RB, Summers EK, Arafat HA (2012) Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination 299:55–62.  https://doi.org/10.1016/j.desal.2012.05.017 CrossRefGoogle Scholar
  28. 28.
    Ai S, Wang B, Li X (2018) Numerical analysis on the performance of mechanical vapor recompression system for strong sodium chloride solution enrichment. Appl Therm Eng 137:386–394.  https://doi.org/10.1016/j.applthermaleng.2018.03.104 CrossRefGoogle Scholar
  29. 29.
    Han D, Peng T, Liang L, Xia J (2009) Experimental study on evaporative crystallization of ammonium sulfate based on mechanical vapor recompression. Chem Ind Eng Pro 28:187–189.  https://doi.org/10.16085/j.issn.1000-6613.2009.s1.007 (In Chinese) CrossRefGoogle Scholar
  30. 30.
    Liu SW, Qi Y, Liu D, Liu YP (2001) Handbook of sulfuric acid. Southeast University Press, Nanjing (In Chinese) Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Zetian Si
    • 1
  • Dong Han
    • 1
    Email author
  • Jiming Gu
    • 1
  • Junjie Chen
    • 1
  • Mingrui Zheng
    • 1
  • Yan Song
    • 1
  • Ning Mao
    • 1
  1. 1.College of Energy and Power Engineering, Energy Conservation Research Group (ECGR)Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations