Advertisement

Optimal kinematic design of a single-DOF planar grasper based on metaheuristic optimization

  • Navid Eqra
  • Sajjad TaghvaeiEmail author
  • Ramin Vatankhah
Technical Paper
  • 10 Downloads

Abstract

A method is proposed for optimal synthesis of a grasper mechanism for circular objects. A single-DOF linkage-type grasper is developed considering the geometry of the target objects. The mechanism consists of successive coupled four-bar linkages and is capable of grasping circular objects with desirable range of diameter. The synthesis problem is formulated as a constraint optimization problem, while adaptive inertia weight particle swarm optimization (AIW-PSO) approach is used to carry out the solutions. Biomechanical and industrial applications for the mechanism are suggested and investigated by simulations as case studies. To demonstrate the effectiveness of AIW-PSO on the problem, a comparison with two other well-known metaheuristic algorithms namely PSO and genetic algorithm is done. The results show the efficiency of the proposed algorithm and the performance of the mechanism.

Keywords

Optimal design Mechanism design Adaptive PSO Nature-inspired Optimization Grasp 

Notes

Acknowledgements

We are grateful to Mr. Mohammad Reza Manaberi for providing us the 3D model of the linkage.

References

  1. 1.
    Belfiore NP, Pennestrì E (1997) An atlas of linkage-type robotic grippers. Mech Mach Theory 32(7):811–833.  https://doi.org/10.1016/S0094-114X(97)00006-2 CrossRefGoogle Scholar
  2. 2.
    Saravanan R, Ramabalan S, Ebenezer NGR, Dharmaraja C (2009) Evolutionary multi criteria design optimization of robot grippers. Appl Soft Comput 9(1):159–172.  https://doi.org/10.1016/j.asoc.2008.04.001 CrossRefGoogle Scholar
  3. 3.
    Yamaguchi K, Hirata Y, Kaisumi A, Kosuge K (2012) Design of parts handling and gear assembling device. In: Paper presented at the 2012 IEEE international conference on robotics and automation (ICRA)Google Scholar
  4. 4.
    Bemfica J, Melchiorri C, Moriello L, Palli G, Scarcia U, Vassura G (2013) Mechatronic design of a three-fingered gripper for underwater applications. IFAC Proc Vol 46(5):307–312.  https://doi.org/10.3182/20130410-3-CN-2034.00080 CrossRefGoogle Scholar
  5. 5.
    Jung T-J, Oh J-H (2013) Design of a robot gripper for a rapid service robot. IFAC Proc Vol 46(5):319–324.  https://doi.org/10.3182/20130410-3-CN-2034.00110 CrossRefGoogle Scholar
  6. 6.
    Hassan A, Abomoharam M (2014) Design of a single DOF gripper based on four-bar and slider-crank mechanism for educational purposes. Procedia CIRP 21:379–384.  https://doi.org/10.1016/j.procir.2014.02.062 CrossRefGoogle Scholar
  7. 7.
    Galabov V, Stoyanova Y, Slavov G (2014) Synthesis of an adaptive gripper. Appl Math Model 38(13):3175–3181.  https://doi.org/10.1016/j.apm.2013.11.038 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sintov A, Menassa RJ, Shapiro A (2016) A gripper design algorithm for grasping a set of parts in manufacturing lines. Mech Mach Theory 105:1–30.  https://doi.org/10.1016/j.mechmachtheory.2016.06.015 CrossRefGoogle Scholar
  9. 9.
    Hao G, Hand RB (2016) Design and static testing of a compact distributed-compliance gripper based on flexure motion. Arch Civ Mech Eng 16(4):708–716.  https://doi.org/10.1016/j.acme.2016.04.011 CrossRefGoogle Scholar
  10. 10.
    Sumi S, Böhm V, Zimmermann K (2017) A multistable tensegrity structure with a gripper application. Mech Mach Theory 114:204–217.  https://doi.org/10.1016/j.mechmachtheory.2017.04.005 CrossRefGoogle Scholar
  11. 11.
    Russo M, Ceccarelli M, Corves B, Hüsing M, Lorenz M, Cafolla D, Carbone G (2017) Design and test of a gripper prototype for horticulture products. Robot Comput-Integr Manuf 44:266–275.  https://doi.org/10.1016/j.rcim.2016.09.005 CrossRefGoogle Scholar
  12. 12.
    Rosati G, Minto S, Oscari F (2017) Design and construction of a variable-aperture gripper for flexible automated assembly. Robot Comput-Integr Manuf 48:157–166.  https://doi.org/10.1016/j.rcim.2017.03.010 CrossRefGoogle Scholar
  13. 13.
    Stavenuiter RA, Birglen L, Herder JL (2017) A planar underactuated grasper with adjustable compliance. Mech Mach Theory 112:295–306.  https://doi.org/10.1016/j.mechmachtheory.2016.08.001 CrossRefGoogle Scholar
  14. 14.
    Rodríguez NEN, Carbone G, Ceccarelli M (2006) Optimal design of driving mechanism in a 1-DOF anthropomorphic finger. Mech Mach Theory 41(8):897–911.  https://doi.org/10.1016/j.mechmachtheory.2006.03.016 CrossRefzbMATHGoogle Scholar
  15. 15.
    Rajestari Z, Feizi N, Taghvaei S, Jalisi M (2017) Optimal kinematic synthesis and fabrication of a one-DoF prosthetic finger. J Braz Soc Mech Sci Eng.  https://doi.org/10.1007/s4043 CrossRefGoogle Scholar
  16. 16.
    Eqra N, Abiri AH, Vatankhah R (2018) Optimal synthesis of a four-bar linkage for path generation using adaptive PSO. J Braz Soc Mech Sci Eng 40(9):469CrossRefGoogle Scholar
  17. 17.
    Freudenstein F (1954) An analytical approach to the design of four-link mechanisms. Trans ASME 76(3):483–492MathSciNetGoogle Scholar
  18. 18.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Paper presented at the Proceedings of the 1995 IEEE international conference on neural networksGoogle Scholar
  19. 19.
    Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res 33(3):859–871.  https://doi.org/10.1016/j.cor.2004.08.012 CrossRefzbMATHGoogle Scholar
  20. 20.
    Lei K, Qiu Y, He Y (2006) A new adaptive well-chosen inertia weight strategy to automatically harmonize global and local search ability in particle swarm optimization. In: 2006. ISSCAA 2006. 1st international symposium on paper presented at the systems and control in aerospace and astronauticsGoogle Scholar
  21. 21.
    Fan S-KS, Chiu Y-Y (2007) A decreasing inertia weight particle swarm optimizer. Eng Optim 39(2):203–228.  https://doi.org/10.1080/03052150601047362 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Saber AY, Senjyu T, Urasaki N, Funabashi T (2006) Unit commitment computation-a novel fuzzy adaptive particle swarm optimization approach. In: Paper presented at the power systems conference and exposition, 2006. PSCE’06. 2006 IEEE PESGoogle Scholar
  23. 23.
    Jiao B, Lian Z, Gu X (2008) A dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons Fractals 37(3):698–705.  https://doi.org/10.1016/j.chaos.2006.09.063 CrossRefzbMATHGoogle Scholar
  24. 24.
    Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670.  https://doi.org/10.1016/j.asoc.2011.01.037 CrossRefGoogle Scholar
  25. 25.
    Bataller A, Cabrera J, Clavijo M, Castillo J (2016) Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mech Mach Theory 105:31–43.  https://doi.org/10.1016/j.mechmachtheory.2016.06.022 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShiraz UniversityShirazIran

Personalised recommendations