Advertisement

Modeling and evolutionary computation on drilling of carbon fiber-reinforced polymer nanocomposite: an integrated approach using RSM based PSO

  • D. VijayanEmail author
  • T. Rajmohan
Technical Paper
  • 34 Downloads

Abstract

Among the various classifications of fiber-reinforced polymer composites, carbon fiber-reinforced plastic (CFRP) composite materials have great potential in aerospace, automobile and marine industries. Drilling is a common machining process of CFRP composites. Surface delamination, tearing, abrasion, denting, cutting of fibers, formation of voids, fiber bending and pullout, etc. are significant problems that occur in the drilling of CFRP composites, among which surface delamination is identified as a critical issue. By optimizing the drilling parameters, the effect of delamination can be minimized, resulting in good quality holes. The drilling process involves several critical process parameters. Therefore, achieving accurate holes during the process is extremely difficult. Three significant drilling process parameters were considered in the present investigation aimed at achieving an optimum drilling response: the thrust force and entry and exit delamination factors. An integrated response surface methodology-based particle swarm algorithm was used to obtain optimal drilling parameters. The obtained optimal settings for CFRP drilling are a drilling speed of 1100 rpm, a feed rate of 5 mm/rev, 5% CNTs and a 110° point angle. The high feed rate increases the thrust force and entry and exit delamination factors in the drilling of fabricated hybrid nano-CNT/CFRP composites.

Keywords

Composites Carbon fiber Algorithm Drilling 

Notes

References

  1. 1.
    Turki Y, Habak M, Velasco R, Vantomme P (2017) Highlighting cutting mechanisms encountered in carbon/epoxy composite drilling using orthogonal cutting. Int J Adv Manuf Technol 92(1–4):685–697.  https://doi.org/10.1007/s00170-017-0153-0 CrossRefGoogle Scholar
  2. 2.
    Fu R, Jia Z, Wang F, Jin Y, Sun D, Yang L, Cheng D (2018) Drill-exit temperature characteristics in drilling of UD and MD CFRP composites based on infrared thermography. Int J Mach Tools Manuf 135:24–37.  https://doi.org/10.1016/j.ijmachtools.2018.08.002 CrossRefGoogle Scholar
  3. 3.
    Sorrentino L, Turchetta S, Bellini C (2018) A new method to reduce delaminations during drilling of FRP laminates by feed rate control. Compos Struct 186:154–164.  https://doi.org/10.1016/j.compstruct.2017.12.005 CrossRefGoogle Scholar
  4. 4.
    Rajmohan T, Vinayagamoorthy R, Mohan K (2018) Review on effect machining parameters on performance of natural fibre–reinforced composites (NFRCs). J Thermoplast Compo Mater.  https://doi.org/10.1177/0892705718796541 CrossRefGoogle Scholar
  5. 5.
    Qiu X, Li P, Li C, Niu Q, Chen A, Ouyang P, Ko TJ (2018) Study on chisel edge drilling behavior and step drill structure on delamination in drilling CFRP. Compos Struct 203:404–413.  https://doi.org/10.1016/j.compstruct.2018.07.007 CrossRefGoogle Scholar
  6. 6.
    Harrag N, Refoufi A, Harrag A (2018) New NSGA-II-based OLSR self-organized routing protocol for mobile ad hoc networks. J Ambient Intell Humaniz Comput.  https://doi.org/10.1007/s12652-018-0947-4 CrossRefGoogle Scholar
  7. 7.
    Shinko I, Kolici V, Obukata R, Barolli A, Oda T, Barolli L (2017) Performance analysis of a genetic algorithm based system for wireless mesh networks considering exponential and weibull distributions, DCF and EDCA, and different number of flows. J Ambient Intell Humaniz Comput 9(3):699–707.  https://doi.org/10.1007/s12652-017-0468-6 CrossRefGoogle Scholar
  8. 8.
    Lei D, Zhang P, Zhang Y, Xia Y, Zhao S (2018) Research on optimization of multi stage yard crane scheduling based on genetic algorithm. J Ambient Intell Humaniz Comput.  https://doi.org/10.1007/s12652-018-0918-9 CrossRefGoogle Scholar
  9. 9.
    Li N, Sheikh-Ahmad JY, El-Sinawi A, Krishnaraj V (2019) Multi-objective optimization of the trimming operation of CFRPs using sensor-fused neural networks and TOPSIS. Measurement 132:252–262.  https://doi.org/10.1016/j.measurement.2018.09.057 CrossRefGoogle Scholar
  10. 10.
    Patra K, Jha AK, Szalay T, Ranjan J, Monostori L (2017) Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals. Precis Eng 48:279–291.  https://doi.org/10.1016/j.precisioneng.2016.12.011 CrossRefGoogle Scholar
  11. 11.
    Chupakhin S, Kashaev N, Klusemann B, Huber N (2017) Artificial neural network for correction of effects of plasticity in equibiaxial residual stress profiles measured by hole drilling. J Strain Anal Eng Des 52(3):137–151.  https://doi.org/10.1177/0309324717696400 CrossRefGoogle Scholar
  12. 12.
    Gautam GD, Pandey AK (2018) Teaching learning algorithm based optimization of kerf deviations in pulsed Nd:YAG laser cutting of Kevlar-29 composite laminates. Infrared Phys Technol 89:203–217.  https://doi.org/10.1016/j.infrared.2017.12.017 CrossRefGoogle Scholar
  13. 13.
    Abhishek K, Rakesh Kumar V, Datta S, Mahapatra SS (2015) Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm). J Intell Manuf 28(8):1769–1785.  https://doi.org/10.1007/s10845-015-1050-8 CrossRefGoogle Scholar
  14. 14.
    Kalita K, Bhoi PMA, Ghadai R (2018) Optimizing drilling induced delamination in gfrp composites using genetic algorithm and particle swarm optimisation. Adv Compos Lett 27(1):1CrossRefGoogle Scholar
  15. 15.
    Ojeda GDR, de Almeida LAL, Vilcanqui OAC (2018) Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization. Simul Model Pract Theory 81:1–10.  https://doi.org/10.1016/j.simpat.2017.11.004 CrossRefGoogle Scholar
  16. 16.
    Kitayama S, Natsume S (2014) Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization. Simul Model Pract Theory 48:35–44.  https://doi.org/10.1016/j.simpat.2014.07.004 CrossRefGoogle Scholar
  17. 17.
    Liu L-L, Wan X, Gao Z, Li X, Feng B (2018) Research on modelling and optimization of hot rolling scheduling. J Ambient Intell Humaniz Comput.  https://doi.org/10.1007/s12652-018-0944-7 CrossRefGoogle Scholar
  18. 18.
    Pinho LV, Carou D, Davim JP (2016) Delamination of carbon fiber reinforced plastics: analysis of the drilling methodGoogle Scholar
  19. 19.
    Hocheng H, Chen CC, Tsao CC (2018) Prediction of critical thrust force for tubular composite in drilling-induced delamination by numerical and experimental analysis. Compos Struct 203:566–573.  https://doi.org/10.1016/j.compstruct.2018.07.051 CrossRefGoogle Scholar
  20. 20.
    Voss R, Seeholzer L, Kuster F, Wegener K (2019) Analytical force model for orthogonal machining of unidirectional carbon fibre reinforced polymers (CFRP) as a function of the fibre orientation. J Mater Process Technol 263:440–469.  https://doi.org/10.1016/j.jmatprotec.2018.08.001 CrossRefGoogle Scholar
  21. 21.
    Karpat Y, Bahtiyar O (2015) Tool geometry based prediction of critical thrust force while drilling carbon fiber reinforced polymers. Adv Manuf 3(4):300–308.  https://doi.org/10.1007/s40436-015-0129-y CrossRefGoogle Scholar
  22. 22.
    Abhishek K, Datta S, Mahapatra SS (2014) Optimization of thrust, torque, entry, and exist delamination factor during drilling of CFRP composites. Int J Adv Manuf Technol.  https://doi.org/10.1007/s00170-014-6199-3 CrossRefGoogle Scholar
  23. 23.
    Kumar D, Sing KK (2017) Experimental analysis of delamination, thrust force and surface roughness on drilling of glass fibre reinforced polymer composites material using different drills. Mater Today Proc 4(8):7618–7627.  https://doi.org/10.1016/j.matpr.2017.07.095 CrossRefGoogle Scholar
  24. 24.
    Samuel Raj D, Karunamoorthy L (2019) Performance of cryogenically treated WC drill using tool wear measurements on the cutting edge and hole surface topography when drilling CFRP. Int J Refract Metal Hard Mater 78:32–44.  https://doi.org/10.1016/j.ijrmhm.2018.08.011 CrossRefGoogle Scholar
  25. 25.
    Shunmugesh K, Panneerselvam K (2018) Multi-performance optimization of drilling carbon fiber reinforced polymer using taguchi: membership function. Trans Indian Inst Met 71(7):1615–1627.  https://doi.org/10.1007/s12666-018-1296-x CrossRefGoogle Scholar
  26. 26.
    Heidary H, Karimi NZ, Minak G (2018) Investigation on delamination and flexural properties in drilling of carbon nanotube/polymer composites. Compos Struct 201:112–120.  https://doi.org/10.1016/j.compstruct.2018.06.041 CrossRefGoogle Scholar
  27. 27.
    Rao S, Sethi A, Das AK, Mandal N, Kiran P, Ghosh R, Dixit A, Mandal A (2017) Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Mater Manuf Processes 32(14):1612–1621CrossRefGoogle Scholar
  28. 28.
    Rajmohan T, Palanikumar K, Davim JP, Premnath AA (2014) Modeling and optimization in tribological parameters of polyether ether ketone matrix composites using D-optimal design. J Thermoplast Compos Mater 29(2):161–188.  https://doi.org/10.1177/0892705713518790 CrossRefGoogle Scholar
  29. 29.
    Anand G, Alagumurthi N, Elansezhian R, Palanikumar K, Venkateshwaran N (2018) Investigation of drilling parameters on hybrid polymer composites using grey relational analysis, regression, fuzzy logic, and ANN models. J Braz Soc Mech Sci Eng 40(4):214.  https://doi.org/10.1007/s40430-018-1137-1 CrossRefGoogle Scholar
  30. 30.
    Ragunath S, Velmurugan C, Kannan T (2017) Optimization of drilling delamination behavior of GFRP/clay nano-composites using RSM and GRA methods. Fibers Polym 18(12):2400–2409.  https://doi.org/10.1007/s12221-017-7420-4 CrossRefGoogle Scholar
  31. 31.
    Chen J, Ding Y, Jin Y, Hao K (2013) A synergetic immune clonal selection algorithm based multi-objective optimization method for carbon fiber drawing process. Fibers Polym 14(10):1722–1730.  https://doi.org/10.1007/s12221-013-1722-y CrossRefGoogle Scholar
  32. 32.
    Moazzen M, Mousavi Khaneghah A, Shariatifar N, Ahmadloo M, Eş I, Baghani AN, Yousefinejad S, Alimohammadi M, Azari A, Dobaradaran S, Rastkari N, Nazmara S, Delikhoon M, Jahed Khaniki G (2018) Multi-walled carbon nanotubes modified with iron oxide and silver nanoparticles (MWCNT-Fe 3 O 4/Ag) as a novel adsorbent for determining PAEs in carbonated soft drinks using magnetic SPE-GC/MS method. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2018.03.003 CrossRefGoogle Scholar
  33. 33.
    Balaji M, Murthy BSN, Rao NM (2016) Multi response optimization of cutting parameters in drilling of AISI 304 stainless steels using response surface methodology. Proc Inst Mech Eng Part B J Eng Manuf 232(1):151–161.  https://doi.org/10.1177/0954405416636507 CrossRefGoogle Scholar
  34. 34.
    Kennedy J (2010) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, Boston, pp 760–766.  https://doi.org/10.1007/978-0-387-30164-8_630 CrossRefGoogle Scholar
  35. 35.
    Dewil R, Küçükoğlu İ, Luteyn C, Cattrysse D (2018) A critical review of multi-hole drilling path optimization. Arch Comput Methods Eng.  https://doi.org/10.1007/s11831-018-9251-x CrossRefGoogle Scholar
  36. 36.
    Malviya R, Pratihar DK (2011) Tuning of neural networks using particle swarm optimization to model MIG welding process. Swarm Evol Comput 1(4):223–235.  https://doi.org/10.1016/j.swevo.2011.07.001 CrossRefGoogle Scholar
  37. 37.
    Abhishek K, Datta S, Mahapatra SS (2015) Optimization of thrust, torque, entry, and exist delamination factor during drilling of CFRP composites. Int J Adv Manuf Technol 76(1):401–416.  https://doi.org/10.1007/s00170-014-6199-3 CrossRefGoogle Scholar
  38. 38.
    Anarghya A, Harshith DN, Rao N, Nayak NS, Gurumurthy BM, Abhishek VN, Patil IGS (2018) Thrust and torque force analysis in the drilling of aramid fibre-reinforced composite laminates using RSM and MLPNN-GA. Heliyon 4(7):e00703.  https://doi.org/10.1016/j.heliyon.2018.e00703 CrossRefGoogle Scholar
  39. 39.
    Davim JP (ed) (2015) Machinability of fibre-reinforced plastics. De Gruyter, BerlinGoogle Scholar
  40. 40.
    Srinivasan T, Palanikumar K, Rajagopal K, Latha B (2016) Optimization of delamination factor in drilling GFR–polypropylene composites. Mater Manuf Processes 32(2):226–233.  https://doi.org/10.1080/10426914.2016.1151038 CrossRefGoogle Scholar
  41. 41.
    Ameur MF, Habak M, Kenane M, Aouici H, Cheikh M (2016) Machinability analysis of dry drilling of carbon/epoxy composites: cases of exit delamination and cylindricity error. Int J Adv Manuf Technol 88(9–12):2557–2571.  https://doi.org/10.1007/s00170-016-8967-8 CrossRefGoogle Scholar
  42. 42.
    Kaybal HB, Ünüvar A, Koyunbakan M, Avcı A (2018) A novelty optimization approach for drilling of CFRP nanocomposite laminates. Int J Adv Manuf Technol.  https://doi.org/10.1007/s00170-018-2873-1 CrossRefGoogle Scholar
  43. 43.
    Hussein R, Sadek A, Elbestawi MA, Attia MH (2018) Low-frequency vibration-assisted drilling of hybrid CFRP/Ti6Al4 V stacked material. Int J Adv Manuf Technol 98(9–12):2801–2817.  https://doi.org/10.1007/s00170-018-2410-2 CrossRefGoogle Scholar
  44. 44.
    Jia Z, Bai Y, Wang F, Ma J, Cheng D, Zhang Z (2018) Effect of drill flute direction on delamination at the exit in drilling carbon fiber reinforced plastic. Polym Compos.  https://doi.org/10.1002/pc.25040 CrossRefGoogle Scholar
  45. 45.
    Babu J, Paul Alex N, Abraham SP, Philip J, Anoop BN, Davim JP (2017) Development of a comprehensive delamination assessment factor and its evaluation with high-speed drilling of composite laminates using a twist drill. Proc Inst Mech Eng Part B J Eng Manuf 232(12):2109–2121.  https://doi.org/10.1177/0954405417690552 CrossRefGoogle Scholar
  46. 46.
    Panchagnula KK, Palaniyandi K (2018) Drilling on fiber reinforced polymer/nanopolymer composite laminates: a review. J Mater Res Technol 7(2):180–189.  https://doi.org/10.1016/j.jmrt.2017.06.003 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSri Chandrasekharendra Saraswathi Viswa MahavidyalayaEnathur, KanchipuramIndia

Personalised recommendations