Advertisement

Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites

  • A. BalajiEmail author
  • K. Sivaramakrishnan
  • B. Karthikeyan
  • R. Purushothaman
  • J. Swaminathan
  • S. Kannan
  • R. Udhayasankar
  • A. Haja Madieen
Technical Paper
  • 62 Downloads

Abstract

Recently, polymer composite materials are the most widely used elements in engineering applications. In this work, hybrid polymer composites of epoxy (E) reinforced with sisal (SF), banana (BF), coir (CF) and sisal/banana/coir (SBCF) fibers were fabricated by compression molding process. Five different kinds of laminates were prepared in the following stacking sequence of E, E/SF, E/BF, E/CF and E/SBCF of 30% SF,BF, CF with 70% of E and 10% of each fiber with 70% of E. Mechanical properties like tensile, flexural, impact and hardness strength in addition to water absorption test were evaluated and compared. Interfacial analysis was also carried out with the help of scanning electron microscope to study the micro-structural behavior of the tested specimen. The chemical formation of the new polymer composites and hybrid polymer composites was analyzed by means of Fourier-transform infrared spectroscopy technique additionally. The mechanical results showed that among these polymer composites, E/SF polymer composites were found to possess enhanced strength.

Keywords

Hybrid composites Biocomposites Polymer composites Mechanical strength FT-IR 

Notes

References

  1. 1.
    Sarasini F, Puglia D, Forunati E, Kenny JM, Santulli C (2013) Effect of fiber surface treatments on thermomechanical behavior of poly(lactic acid)/phormium tenax composites. J Polym Environ 21:881–891CrossRefGoogle Scholar
  2. 2.
    Singha AS, Thakur VK (2009) Morphological, thermal and physico-chemical characterizations of surface modified pinus fibers. Int J Polym Anal Charact 14(3):271–289CrossRefGoogle Scholar
  3. 3.
    Kommula VP, Obi Reddy K, Shukla M, Marwala T, Varada Rajulu A (2013) Physico-chemical, tensile, and thermal characterization of Napier grass (native African) fiber strands. Int J Polym Anal Charact 18:303–314CrossRefGoogle Scholar
  4. 4.
    Balaji A, Karthikeyan B, Sunder Raj C (2015) Morphological and mechanical behavior of sugarcane bagasse fibers reinforced polyester eco-friendly biocomposites. J Chem Pharm Res 7(8):573–577Google Scholar
  5. 5.
    Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18CrossRefGoogle Scholar
  6. 6.
    Nunna S, Chandra PR, Shrivastava S, Jalan AK (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31:759–769CrossRefGoogle Scholar
  7. 7.
    Singha AS, Thakur VK (2009) Synthesis and characterization of silane treated Grewia optiva fibers. Int J Polym Anal Charact 14(4):301–321CrossRefGoogle Scholar
  8. 8.
    Mohanty AK, Misra M, Drzal LT (2005) Natural fibres, biopolymers and biocomposites. CRC Press, Boca RatonCrossRefGoogle Scholar
  9. 9.
    Gu Huang (2009) Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater Des 30(9):3931–3934CrossRefGoogle Scholar
  10. 10.
    Sarathi R, Sahu RK, Rajeshkumar P (2007) Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Mater Sci Eng 445:567–578CrossRefGoogle Scholar
  11. 11.
    Ali R, Iannace S, Nicolais L (2003) Effect of processing conditions on mechanical and viscoelastic properties of biocomposites. J Appl Polym Sci 88(7):1637–1642CrossRefGoogle Scholar
  12. 12.
    Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63(2):283–293CrossRefGoogle Scholar
  13. 13.
    Harish S, Michael DP, Bensely A, Lal DM, Rajadurai A (2009) Mechanical property evaluation of natural fiber coir composite. Mater Charact 60(1):44–49CrossRefGoogle Scholar
  14. 14.
    Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336CrossRefGoogle Scholar
  15. 15.
    Pan NC, Chattopadhyay SN, Day A (2004) Pseudo single-bath process for alkali treatment and bleaching of jute at ambient temperature. Indian J FibreText 29:79–84Google Scholar
  16. 16.
    Huang Z, Wang N, Zhang Y, Hu H, Luo Y (2012) Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly (vinyl chloride) composites. Compos Part A-Appl S 43(1):114–120CrossRefGoogle Scholar
  17. 17.
    Balaji A, Karthikeyan B, Swaminathan J, Sundar Raj C (2018) Thermal behavior of cardanol resin reinforced 20 mm long untreated bagasse fiber composites. Int J Polym Anal Charact 1:70–77CrossRefGoogle Scholar
  18. 18.
    Anbarasan R, Kalaignan GP, Vasudevan T, Gopalan A (1999) Characterization of chemical grafting of polyaniline onto wool fiber. Int J Polym Anal Charact 5(3):247–256CrossRefGoogle Scholar
  19. 19.
    Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63:375–387CrossRefGoogle Scholar
  20. 20.
    Savastano H, Warden PG, Coutts RSP (2000) Brazilian waste fibres as reinforcement for cement-based composites. Cem Concr Compos 22(5):379–384CrossRefGoogle Scholar
  21. 21.
    Mehanny S, Farag M, Rashad RM, Elsayed H (2012) Fabrication and characterization of starch based bagasse fiber composite. In: ASME 2012 international mechanical engineering congress and exposition. pp 1345–1353Google Scholar
  22. 22.
    Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohyd Polym 101:11–19CrossRefGoogle Scholar
  23. 23.
    Elsayed H, Farag M, Megahed H, Mehanny S (2012) Influence of flax fibers on properties of starch-based composites. In: IMECE2012-89628, proceedings of ASME 2012 international conference of mechanical engineering, Huston, Texas, USAGoogle Scholar
  24. 24.
    Ibrahim H, Mehanny S, Darwish L, Farag M (2018) A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosic fibers. J Polym Environ 26(6):2434–2447CrossRefGoogle Scholar
  25. 25.
    Mehanny S, Darwish L, Ibrahim H, El-Wakad MT, Farag M (2016) High-content lignocellulosic fibers reinforcing starch-based biodegradable composites: properties and applications. In: Poletto M (ed) Composites from renewable and sustainable materials. IntechOpen, pp 45–64Google Scholar
  26. 26.
    Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68(7–8):1601–1607CrossRefGoogle Scholar
  27. 27.
    Dos Santos BH, de Souza do Prado K, Jacinto AA, da Silva S, Aparecida M (2018) Influence of sugarcane bagasse fiber size on biodegradable composites of thermoplastic starch. J Renew Mater 6(2):176–182CrossRefGoogle Scholar
  28. 28.
    Udhayasankar R, Karthikeyan B (2018) Prepration and properties of cashew nut shell liquid-based composites reinforced by coconut shell particles. Sur Rev Lett 26:1850174CrossRefGoogle Scholar
  29. 29.
    Thakur VK, Singha AS, Thakur MK (2013) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites.”. Int J Polym Mat Polym 62(4):226–230CrossRefGoogle Scholar
  30. 30.
    Thaker Nidhi, Srinivasulu B, Shit Subhas C (2013) A study on characterization and comparison of alkali treated and untreated coconut shell powder reinforced polyester composites. Int J Sci Eng Technol 2(6):469–473Google Scholar
  31. 31.
    Agunsoye JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene biocomposites: Morphological and mechanical properties study. Results Phys 3:187–194CrossRefGoogle Scholar
  32. 32.
    Lin Jin-Chein, Chang LC, Nien MH, Ho HL (2006) Mechanical behavior of various nanoparticle filled composites at low-velocity impact. Compos Struct 74(1):30–36CrossRefGoogle Scholar
  33. 33.
    Amir HH, Ismail G, Behzad B, Ahmad S (2011) Influence of nanoclay on the physical properties of recycled high-density polyethylene/bagasse nanocomposite. Middle East J 8(3):648–651Google Scholar
  34. 34.
    Ramesh M, Logesh R, Manikandan M, Kumar NS, Pratap DV (2017) Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites. Mater Res 20(2):365–376CrossRefGoogle Scholar
  35. 35.
    Priyanka PS (2013) Effect of water absorption on interface and tensile properties of banana fibre reinforced functionalized polypropylene (BF/CFPP) composites developed by Palsule process. Appl Polym Compos 1(2):103–112Google Scholar
  36. 36.
    Mulinari DR, Voorwald HJC, Cioffi MOH, Rocha GJ, Pinto Da Silva MLC (2010) Surface modification of sugarcane bagasse cellulose and its effect on mechanical and water absorption properties of sugarcane bagasse cellulose/HDPE composites. BioResources 5:661–671Google Scholar
  37. 37.
    Udhayasankar R, Karthikeyan B, Balaji A (2018) Coconut shell particles reinforced cardanol–formaldehyde resole resin biocomposites: Effect of treatment on thermal properties. Int J Polym Anal Charact 3:252–259CrossRefGoogle Scholar
  38. 38.
    Jawaid M, Khalil HA, Bakar AA, Khanam PN (2011) Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater Des 32(2):1014–1019CrossRefGoogle Scholar
  39. 39.
    Atuanya CU, Edokpia RO, Aigbodion VS (2014) The physio-mechanical properties of recycled low density polyethylene (RLDPE)/bean pod ash particulate composites. Results Phys 4:88–95CrossRefGoogle Scholar
  40. 40.
    Prabhu P, Iqbal SM, Balaji A, Karthikeyan B (2018) Experimental investigation of mechanical and machining parameters of hybrid nanoclay glass fiber-reinforced polyester composites. Adv Compos Hybrid Mater 2(1):93–101CrossRefGoogle Scholar
  41. 41.
    Swaminathan J, Ramalingam M, Sundaraganesan N (2009) Molecular structure and vibrational spectra of 3-amino-5-hydroxypyrazole by density functional method. Spectrochim Acta Mol Biomol Spectrosc 71:1776CrossRefGoogle Scholar
  42. 42.
    Viruthagiri G, Sathiyapriya S, Shanmugam N, Balaji A, Balamurugan K, Gopinathan E (2015) Spectroscopic investigation on the production of clay bricks with SCBA waste. Spectrochim Acta A 149:468–475CrossRefGoogle Scholar
  43. 43.
    Aziz NAN, Idris NK, Isa MIN (2010) Solid polymer electrolytes based on methylcellulose: FT-IR and ionic conductivity studies. Int J Polym Anal Charact 15(5):319–327CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringA.V.C. College of EngineeringMayiladuthuraiIndia
  2. 2.Department of Mechanical Engineering, Faculty of Engineering and TechnologyAnnamalai UniversityChidambaramIndia
  3. 3.Department of ChemistryA.V.C. College of EngineeringMayiladuthuraiIndia

Personalised recommendations