A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines

  • S. LaínEmail author
  • L. T. Contreras
  • O. López


Hydrokinetic energy conversion devices provide the facility to capture energy from water flow without the need of large dams, impoundments, channels or deviation of the water as in conventional hydroelectric centrals. Hydrokinetic systems are intended to be used in streams, either natural (rivers, estuaries, marine currents) or artificially built channels. This article reviews the advances made over the last 10–15 years regarding the three-dimensional computational fluid dynamics modeling and simulation of this type of turbines. Technical aspects of model design, employed boundary conditions, solution of the governing equations of the water flow through the hydrokinetic turbine and assumptions made during the simulations are thoroughly described. We hope that this review will encourage new computational investigations about hydrokinetic turbines that contribute to their continuous improvement, development and implementation aimed to sustainable use of water resources and addressed to solve the problem of lack of electricity supply in small, isolated populations.


CFD Hydrokinetic turbine Simulation Horizontal axis turbine Axial flow water turbine 

List of symbols


Cross-sectional area of the rotor (m2)

\(A_{\infty }\)

Water area upstream the turbine (m2)


Actuator disk area (m2)


Disk area (m2)


Diffuser exit area (m2)


Water area downstream the turbine (m2)


Axial flow induction factor

\(a^{\prime }\)

Tangential flow induction factor


Number of blades


Blade chord length (m)


Drag coefficient

\(C_{{{\text{L}},{ \rm{max} }}}\)

Maximum lift coefficient


Lift coefficient


Thrust coefficient


Power coefficient at the diffuser exit


Power coefficient


Nozzle diameter (m)


Cylinder diameter (m)


Cylinder duct diameter (m)


Diameter of turbine (m)


Force (N)


Pressure coefficient (–)


Cylinder duct length (m)


Fluid power (W)


Pressure across the actuator disk (Pa)


Rotor torque (N)


Radius of turbine (m)


Radius of local blade element (m)


Rotor thrust (N)

\(U_{\infty }\)

Free stream velocity (m/s)


Free stream at the actuator disk (m/s)


Free stream downstream the turbine (m/s)


Dynamic viscosity of the water (N s/m2)


Water density (kg/m3)




Cavitation number


Angle of attack (°)


Turbulence dissipation


Rotational speed (rad/s)



The financial support of the Dirección de Investigaciones y Desarrollo Tecnológico of Universidad Autónoma de Occidente is gratefully acknowledged (Project “Evaluación y simulación computacional de turbinas hidrocinéticas de río de eje horizontal”). This work was partially sponsored by the Young Researchers Program from the Colombian Administrative Department of Science, Technology and Innovation, COLCIENCIAS (L.T. Contreras).


  1. 1.
    Khan MJ, Iqbal MT, Quaicoe JE (2008) River current energy conversion systems: progress, prospects and challenges. Renew Sustain Energy Rev 12(8):2177–2193CrossRefGoogle Scholar
  2. 2.
    Silva PASFE (2014) Estudo numérico de turbinas hidrocinéticas de eixo horizontal (Mestrado em Ciências Mecânicas). Universidade de Brasília, BrasíliaGoogle Scholar
  3. 3.
    Güney MS, Kaygusuz K (2010) Hydrokinetic energy conversion systems: a technology status review. Renew Sustain Energy Rev 14(9):2996–3004CrossRefGoogle Scholar
  4. 4.
    Gaden D (2007) An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models (Master of Science in Mechanical Engineering). University of Manitoba, Manitoba, CanadaGoogle Scholar
  5. 5.
    Van Els RH, Junior ACPB (2015) The Brazilian experience with hydrokinetic turbines. Energy Proc 75:259–264CrossRefGoogle Scholar
  6. 6.
    López O, Meneses D, Quintero B, Laín S (2016) Computational study of transient flow around Darrieus type cross flow water turbines. J Renew Sustain Energy 8(1):014501CrossRefGoogle Scholar
  7. 7.
    Bai G, Li J, Fan P, Li G (2013) Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines. Renew Energy 53:180–186CrossRefGoogle Scholar
  8. 8.
    Khan MJ, Bhuyan G, Iqbal MT, Quaicoe JE (2009) Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Appl Energy 86(10):1823–1835CrossRefGoogle Scholar
  9. 9.
    Mukherji SS (2010) Design and critical performance evaluation of horizontal axis hydrokinetic turbines (Master of Science in Mechanical Engineering). Missouri University of Science and Technology, Missouri, USAGoogle Scholar
  10. 10.
    Kolekar N, Hu Z, Banerjee A, Du X (2013) Hydrodynamic design and optimization of hydro−kinetic turbines using a robust design method. In: Paper presented in the proceedings of the 1st marine energy technology symposium—METS13, Washington DC, p 10Google Scholar
  11. 11.
    Lago LI, Ponta FL, Chen L (2010) Advances and trends in hydrokinetic turbine systems. Energy Sustain Dev 14(4):287–296CrossRefGoogle Scholar
  12. 12.
    Coiro DP, Maisto U, Scherillo F, Melone S, Grasso F (2006) Horizontal axis tidal current turbine: numerical and experimental investigations. In: Paper presented in proceeding of offshore wind and other marine renewable energies in Mediterranean and European seas, European seminar, Rome, ItalyGoogle Scholar
  13. 13.
    Lee JH, Park S, Kim DH, Rhee SH, Kim MC (2012) Computational methods for performance analysis of horizontal axis tidal stream turbines. Appl Energy 98:512–523CrossRefGoogle Scholar
  14. 14.
    López O, Meneses D, Laín S (2015) Computational study of the interaction between hydrodynamics and rigid body dynamics of a Darrieus type H turbine. Chapter VI, CFD for wind and tidal offshore turbines. Springer, Heidelberg, pp 59–68Google Scholar
  15. 15.
    Wu H, Chen L, Yu M, Li W, Chen B (2012) On design and performance prediction of the horizontal-axis water turbine. Ocean Eng 50:23–30CrossRefGoogle Scholar
  16. 16.
    Laín S, Taborda M, López O (2018) Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 11(2):297CrossRefGoogle Scholar
  17. 17.
    Sommerfeld M, Laín S (2009) From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph Sci Technol 21(1–2):123–140CrossRefGoogle Scholar
  18. 18.
    Laín S, García M, Quintero B, Orrego S (2010) CFD numerical simulations of Francis turbines. Revista Facultad de Ingeniería Universidad de Antioquia 51:24–33Google Scholar
  19. 19.
    Caballero AD, Laín S (2015) Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput Methods Biomech Biomed Eng 18(11):1200–1216CrossRefGoogle Scholar
  20. 20.
    Velasco D, López O, Laín S (2017) Numerical simulations of active flow control with synthetic jets in a Darrieus turbine. Renew Energy 113:129–140CrossRefGoogle Scholar
  21. 21.
    Silva PASF, Vaz DATDR, Britto V, de Oliveira TF, Vaz JRP, Junior ACPB (2018) A new approach for the design of diffuser-augmented hydro turbines using the blade element momentum. Energy Convers Manag 165:801–814CrossRefGoogle Scholar
  22. 22.
    do Rio Vaz DATD, Vaz JRP, Silva PASF (2018) An approach for the optimization of diffuser-augmented hydrokinetic blades free of cavitation. Energy Sustain Dev 45:142–149CrossRefGoogle Scholar
  23. 23.
    Adhikari RC, Vaz J, Wood D (2016) Cavitation inception in crossflow hydro turbines. Energies 9(4):237CrossRefGoogle Scholar
  24. 24.
    Silva PASF, Shinomiya LD, de Oliveira TF, Vaz JRP, Amarante Mesquita AL, Brasil Junior ACP (2017) Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM. Appl Energy 185:1281–1291CrossRefGoogle Scholar
  25. 25.
    Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy: handbook. Wiley, New YorkCrossRefGoogle Scholar
  26. 26.
    Yuce MI, Muratoglu A (2015) Hydrokinetic energy conversion systems: a technology status review. Renew Sustain Energy Rev 43:72–82CrossRefGoogle Scholar
  27. 27.
    Harrison ME, Batten WMJ, Myers LE, Bahaj AS (2010) Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew Power Gener 4(6):613CrossRefGoogle Scholar
  28. 28.
    Rodrigues AP de SP (2007) Parametrização e simulação numérica da turbina hidrocinética: otimização via algoritmos genéticos (Mestrado em Ciências Mecânicas). Universidad de Brasília, Faculdade de Tecnologia. Brasília, BrazilGoogle Scholar
  29. 29.
    Twidell J, Weir AD (2006) Renewable energy resources, 2nd edn. Taylor & Francis, New YorkCrossRefGoogle Scholar
  30. 30.
    Bahaj AS, Myers LE (2003) Fundamentals applicable to the utilisation of marine current turbines for energy production. Renew Energy 28(14):2205–2211CrossRefGoogle Scholar
  31. 31.
    Mathew S (2006) Wind energy: fundamentals, resource analysis, and economics. Springer, BerlinCrossRefGoogle Scholar
  32. 32.
    Suatean B, Colidiuc A, Galetuse S (2012) CFD methods for wind turbines. AIP Conf Proc 1493:998–1002CrossRefGoogle Scholar
  33. 33.
    Bahaj AS, Batten WMJ, McCann G (2007) Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew Energy 32(15):2479–2490CrossRefGoogle Scholar
  34. 34.
    Neary VS, Gunawan B, Sale DC (2013) Turbulent inflow characteristics for hydrokinetic energy conversion in rivers. Renew Sustain Energy Rev 26:437–445CrossRefGoogle Scholar
  35. 35.
    Vaz JRP, Wood DH (2016) Aerodynamic optimization of the blades of diffuser-augmented wind turbines. Energy Convers Manag 123:35–45CrossRefGoogle Scholar
  36. 36.
    Ardizzon G, Cavazzini G, Pavesi G (2014) A new generation of small hydro and pumped-hydro power plants: advances and future challenges. Renew Sustain Energy Rev 31:746–761CrossRefGoogle Scholar
  37. 37.
    Göz MF, Laín S, Sommerfeld M (2004) Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput Chem Eng 28(12):2727–2733CrossRefGoogle Scholar
  38. 38.
    Lain S, Osorio C (2010) Simulation and evaluation of a straight-blade Darrieus-type Cross Flow Marine Turbine. J Sci Ind Res 69:906–912Google Scholar
  39. 39.
    Guney MS (2011) Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew Sustain Energy Rev 15(8):3669–3675CrossRefGoogle Scholar
  40. 40.
    Kang S, Borazjani I, Colby JA, Sotiropoulos F (2012) Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine. Adv Water Resour 39:33–43CrossRefGoogle Scholar
  41. 41.
    Kolekar N, Banerjee A, Mishra R, Mukherji SS (2011) Numerical investigation and evaluation of optimum hydrodynamic performance of a horizontal axis hydrokinetic turbine. J Renew Sustain Energy 3(6):063105CrossRefGoogle Scholar
  42. 42.
    Zhu GJ, Guo PC, Luo XQ, Feng JJ (2012) The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm. IOP Conf Ser Earth Environ Sci 15(4):042039CrossRefGoogle Scholar
  43. 43.
    Menter FR (1993) Zonal two equation k-w, turbulence models for aerodynamic flows. In: Paper presented in 24th fluid dynamics conference, Orlando, Florida, AIAA, p 22Google Scholar
  44. 44.
    López O, Quiñones J, Laín S (2018) RANS and hybrid RANS-LES simulations of an H-type Darrieus vertical axis water turbine. Energies 11(9):2348CrossRefGoogle Scholar
  45. 45.
    Bahaj AS, Molland AF, Chaplin JR, Batten WMJ (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32(3):407–426CrossRefGoogle Scholar
  46. 46.
    Chime AH (2013) Analysis of Hydrokinetic Turbines in Open Channel Flows (Master of Science in Mechanical Engineering). University of Washington, Washington, DC, USAGoogle Scholar
  47. 47.
    Guo Q, Zhou LJ, Xiao YX, Wang ZW (2013) Flow field characteristics analysis of a horizontal axis marine current turbine by large eddy simulation. IOP Conf Ser Mater Sci Eng 52(5):052017CrossRefGoogle Scholar
  48. 48.
    Mesquita ALA, Mesquita ALA, Palheta FC, Vaz JRP, de Morais MVG, Gonçalves C (2014) A methodology for the transient behavior of horizontal axis hydrokinetic turbines. Energy Convers Manag 87:1261–1268CrossRefGoogle Scholar
  49. 49.
    Contreras L, Lopez O, Lain S (2018) Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine. Energies 11(11):3151CrossRefGoogle Scholar
  50. 50.
    Otro mundo es posible (2011) Aquavatio: Esperanza para las comunidades ribereñas en Colombia [Blog post]. Accessed 30 Nov 2018
  51. 51.
    Marsh P, Ranmuthugala D, Penesis I, Thomas G (2017) The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew Energy 105:106–116CrossRefGoogle Scholar
  52. 52.
    Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Wang WQ, Yin R, Yan Y (2019) Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renew Energy 133:91–102CrossRefGoogle Scholar
  54. 54.
    Malki R, Williams AJ, Croft TN, Togneri M, Masters I (2013) A coupled blade element momentum—computational fluid dynamics model for evaluating tidal stream turbine performance. Appl Math Model 37(5):3006–3020MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Glauert H (1935) Airplane propellers. In: Durand WF (ed) Aerodynamic theory. Springer, Berlin, pp 169–360CrossRefGoogle Scholar
  56. 56.
    Moriarty PJ, Hansen AC (2005) AeroDyn theory manual (technical report). Retrieved from: Accessed 23 Dec 2018
  57. 57.
    Guo Q, Zhou L, Wang Z (2015) Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine. Renew Energy 75:640–648CrossRefGoogle Scholar
  58. 58.
    Abuan BE, Howell RJ (2019) The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine. Renew Energy 133:1338–1351CrossRefGoogle Scholar
  59. 59.
    Ghani MPA, Yaacob O, Aziz AA (2010) The development of duct for a horizontal axis turbine using CFD. AIP Conf Proc 1225:909–920CrossRefGoogle Scholar
  60. 60.
    Van Bussel GJ (2007) The science of making more torque from wind: diffuser experiments and theory revisited. J Phys Conf Ser 75:012010CrossRefGoogle Scholar
  61. 61.
    Coiro DP, Daniele E, Della Vecchia P (2016) Diffuser shape optimization for GEM, a tethered system based on two horizontal axis hydro turbines. Int J Mar Energy 13:169–179CrossRefGoogle Scholar
  62. 62.
    Shives M, Crawford C (2012) Developing an empirical model for ducted tidal turbine performance using numerical simulation results. Proc Inst Mech Eng Part A J Power Energy 226(1):112–125CrossRefGoogle Scholar
  63. 63.
    Shahsavarifard M, Bibeau EL, Chatoorgoon V (2015) Effect of shroud on the performance of horizontal axis hydrokinetic turbines. Ocean Eng 96:215–225CrossRefGoogle Scholar
  64. 64.
    Bontempo R, Manna M (2016) Effects of the duct thrust on the performance of ducted wind turbines. Energy 99:274–287CrossRefGoogle Scholar
  65. 65.
    Vaz JRP, Wood DH (2018) Effect of the diffuser efficiency on wind turbine performance. Renew Energy 126:969–977CrossRefGoogle Scholar
  66. 66.
    Ten Hoopen PDC (2009) An experimental and computational investigation of a diffuser augmented wind turbine: With an application of vortex generators on the diffuser trailing edge (Master thesis). Delft University of Technology, NetherlandsGoogle Scholar
  67. 67.
    Silva PASF et al (2016) Numerical study of wake characteristics in a horizontal-axis hydrokinetic turbine. An Acad Bras Ciênc 88(4):2441–2456CrossRefGoogle Scholar
  68. 68.
    Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9(1):145–185zbMATHCrossRefGoogle Scholar
  69. 69.
    Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124(3):617CrossRefGoogle Scholar
  70. 70.
    Zwart PJ, Gerber AG, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. In: Paper presented in the ICMF 2004 international conference on multiphase flow, Yokohama, Japan, p 11Google Scholar
  71. 71.
    Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Paper presented in the ICMF-2001, 4th international conference on multiphase flow, New Orleans, USA, p 12Google Scholar
  72. 72.
    Cazzoli G, Falfari S, Bianchi GM, Forte C, Catellani C (2016) Assessment of the cavitation models implemented in OpenFOAM® Under DI-like conditions. Energy Proc 101:638–645CrossRefGoogle Scholar
  73. 73.
    Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2006) Hydrodynamics of marine current turbines. Renew Energy 31(2):249–256CrossRefGoogle Scholar
  74. 74.
    Molland AF, Bahaj AS, Chaplin JR, Batten WMJ (2004) Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbines. Proc Inst Mech Eng Part M J Eng Marit Environ 218(2):127–138CrossRefGoogle Scholar
  75. 75.
    Ning A, Hayman G, Damiani R, Jonkman JM (2015) Development and validation of a new blade element momentum skewed-wake model within AeroDyn. In: Paper presented in 33rd wind energy symposium, Kissimmee, Florida, p 0215Google Scholar
  76. 76.
    Uşar D, Bal Ş (2015) Cavitation simulation on horizontal axis marine current turbines. Renew Energy 80:15–25CrossRefGoogle Scholar
  77. 77.
    Bal S, Kinnas SA (2002) A BEM for the prediction of free surface effects on cavitating hydrofoils. Comput Mech 28(3–4):260–274zbMATHCrossRefGoogle Scholar
  78. 78.
    Kinnas SA, Fine NE (1993) A numerical nonlinear analysis of the flow around two- and three-dimensional partially cavitating hydrofoils. J Fluid Mech 254:151–181zbMATHCrossRefGoogle Scholar
  79. 79.
    Ahmadi MHB (2019) Influence of upstream turbulence on the wake characteristics of a tidal stream turbine. Renew Energy 132:989–997CrossRefGoogle Scholar
  80. 80.
    Wimshurst A, Vogel C, Willden R (2018) Cavitation limits on tidal turbine performance. Ocean Eng 152:223–233CrossRefGoogle Scholar
  81. 81.
    Neary VS, Gunawan B, Hill C, Chamorro LP (2013) Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison. Renew Energy 60:1–6CrossRefGoogle Scholar
  82. 82.
    Churchfield MJ, Li Y, Moriarty PJ (2011) Large-Eddy simulation study of wake propagation and power production in an array of tidal-current turbines: preprint. In: Paper presented in the 9th European wave and tidal energy conference 2011, Southhampton, England, p 12Google Scholar
  83. 83.
    Vybulkova L, Vezza M, Brown R (2016) Simulating the wake downstream of a horizontal axis tidal turbine using a modified vorticity transport model. IEEE J Ocean Eng 41(2):296–301CrossRefGoogle Scholar
  84. 84.
    Pinon G, Mycek P, Germain G, Rivoalen E (2012) Numerical simulation of the wake of marine current turbines with a particle method. Renew Energy 46:111–126CrossRefGoogle Scholar
  85. 85.
    Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements (NREL/TP-500-29494, 783409). Accessed 5 Feb 2019
  86. 86.
    Giguere P, Selig MS (1999) Design of a tapered and twisted blade for the NREL combined experiment rotor. National Renewable Energy Lab, Golden, CO (US)CrossRefGoogle Scholar
  87. 87.
    Kolekar N, Banerjee A (2013) A coupled hydro-structural design optimization for hydrokinetic turbines. J Renew Sustain Energy 5(5):053146CrossRefGoogle Scholar
  88. 88.
    Huang B, Kanemoto T (2015) Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine. Renew Energy 81:837–844CrossRefGoogle Scholar
  89. 89.
    Aranake AC, Lakshminarayan VK, Duraisamy K (2015) Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver. Renew Energy 75:818–832CrossRefGoogle Scholar
  90. 90.
    Coiro DP, De Marco A, Scherillo F, Maisto U, Familio R, Troise G (2009) Harnessing marine current energy with tethered submerged systems: experimental tests and numerical model analysis of an innovative concept. In: Paper presented in international conference on clean electrical power, Capri, Italy, pp 76–86Google Scholar
  91. 91.
    Al Mamun NH (2001) Utilization of River current for small scale electricity generation in Bangladesh (Master of Science in Mechanical Engineering). Bangladesh University of Engineering & Technology, BangladeshGoogle Scholar
  92. 92.
    Islam AS, Al Mamun NH, Islam MQ, Infield DG (2001) Energy from river current for small scale electricity generation in Bangladesh. In: Paper presented in the international solar energy society UK section—conference C, pp 207–213Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.PAI+ Group, Energetics and Mechanics Department, Faculty of EngineeringUniversidad Autónoma de OccidenteCaliColombia
  2. 2.Mathematics, Informatic and Engineering DepartmentUniversité du Québec à Rimousky (UQAR)RimouskiCanada
  3. 3.Computational Mechanics Research Group, Mechanical Engineering Department, Faculty of EngineeringUniversidad de los AndesBogotáColombia

Personalised recommendations