Advertisement

Evolution of surface spur gear tooth temperature based on three-dimensional finite element model

  • Jihua ChangEmail author
  • Shaojun Liu
  • Xiaozhou HuEmail author
  • Yu Dai
Technical Paper
  • 34 Downloads

Abstract

In order to meet the special needs of helicopters with sufficient operating time for landing safely under loss-of-lubrication conditions, it is necessary to avoid the scuffing failure and predict the operating time. A spur gear is taken as the research object. Considering the change of moving source of heat on the gear, simplified models are adopted. Both the spatial distribution and the time history of the gear temperature are simulated by finite element method. The simulation results of bulk temperature are compared with the test measurement ones, while those of the flash temperature history are compared with the experimental and calculation results by Blok flash temperature formula, respectively. The comparison shows a good agreement. The results of simulation and comparison are discussed.

Keywords

Flash temperature history Bulk temperature field Thermal steady state Scuffing failure 

List of symbols

a

Half contact width (mm)

b

Tooth width (mm)

c1, c2

Specific heat (J/kg °C)

d1, d2

Reference diameter (mm)

E1, E2

Young’s modulus (N/mm2)

\( F_{\text{nc}} \)

Normal force (N)

\( F_{\text{tc}} \)

Tangential force (N)

\( h_{\text{c}} \)

Convective heat transfer coefficient (W/m2 °C)

\( H_{\text{c}} \)

Height of contact point on the tooth (mm)

k

Thermal conductivity (W/(m °C))

n

Surface outward normal

n1, n2

Gear rotation speed (r/min)

Pr

Prandtl

qtot

Normalized cooling capacity

Q

Boundary heating flux (W/m2)

rc

Radius of contact point (mm)

Re

Reynolds numbers

\( R_{\text{E1}} \), \( R_{\text{E2}} \)

Radius of curvature (mm)

R1, R2

Pitch radius (mm)

T0

Ambient temperature (°C)

Ttor

Torque (N m)

\( V_{\text{e}} \)

Sliding velocity (m/s)

\( V_{ 1} \), \( V_{ 2} \)

Velocity (m/s)

\( W_{\text{b}} \)

Load (N/mm)

\( X_{\text{R}} \)

Roughness factor (μm)

\( \alpha \)

Pressure angle (rad)

\( \eta \)

Dynamic viscosity (N s/m)

\( \lambda_{1} \), \( \lambda_{2} \)

Thermal conductivity (W/m °C)

\( v_{\text{oil}} \)

Kinematic viscosity (m2/s)

\( \rho_{1} \), \( \rho_{2} \)

Density (kg/m3)

\( \nu_{1} \), \( \nu_{2} \)

Poisson’s ratio

Subscripts

1

Pinion

2

Gear

Notes

Acknowledgements

The paper is supported by National Defense Pre-study Fund of China Grant 8130208.

References

  1. 1.
    Morales W, Handschuh RF (1999) A preliminary study on the vapor/mist phase lubrication of a spur gearbox. Lubr Eng 56(9):14–19Google Scholar
  2. 2.
    Handschuh RF (2008) Feasibility study of vapor-mist phase reaction lubrication using a thioether liquid. Tribol Trans 52(3):370–375Google Scholar
  3. 3.
    Handschuh RF (2015) Thermal behavior of aerospace spur gears in normal and loss-of-lubrication conditions. AHS 71st Annual Forum, Virginia Beach, Virginia, 5–7 May 2015Google Scholar
  4. 4.
    Martin HM (1916) Lubrication of gear teeth. Engineering 102:199–204Google Scholar
  5. 5.
    Henriot G (1984) La Lubrification Industriele - La Lubrification de Engrenages. Tome 1-Transmissions, Compresseurs, Turbines. Publications de l’Institute Français du Pétrole. Éditions Technip, pp 297–385Google Scholar
  6. 6.
    Blok H (1937) Theoretical study on temperature rise at surface of actual contact under oiliness lubrication condition. In: Proceedings of the general discussion of lubrication and lubricants, ImechE, 2, pp 222–235Google Scholar
  7. 7.
    Castro J, Seabra J (2018) Influence of mass temperature on gear scuffing. Tribol Int 119:27–37CrossRefGoogle Scholar
  8. 8.
    Li S, Kahraman A, Anderson N, Wedeven LD (2013) A model to predict scuffing failures of a ball-on-disk contact. Tribol Int 60:233–245CrossRefGoogle Scholar
  9. 9.
    American Gear Manufacture’s Association (2003) AGMA925-A03 effect of lubrication on gear surface distress. American Gear Manufacture’s Association, AlexandriaGoogle Scholar
  10. 10.
    International Organization for Standardization (2000) ISO/TR 13989-1: 2000 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears-part 1: flash temperature method. International Organization for Standardization, GenevaGoogle Scholar
  11. 11.
    International Organization for Standardization (2000) ISO/TR 13989-2: 2000 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears-parts 2: integral temperature method. International Organization for Standardization, GenevaGoogle Scholar
  12. 12.
    Jaeger JC (1942) Moving sources of heat and temperature at sliding contacts. Proc R Soc N S W 56:203–224Google Scholar
  13. 13.
    Kalin M, Vižintin J (2001) Comparison of different theoretical models for flash temperature calculation under fretting conditions. Tribol Int 34:831–839CrossRefGoogle Scholar
  14. 14.
    Blok H (1969) The thermal-network method for predicting bulk temperature in gear transmission. Wiley, New York, pp 40–65Google Scholar
  15. 15.
    Fernandes CMCG, Rocha DMP, Martins RC et al (2018) Finite element method model to predict bulk and flash temperature on polymer gears. Tribol Int 120:255–268CrossRefGoogle Scholar
  16. 16.
    Shi Y, Yao Y, Fei J (2016) Analysis of bulk temperature field and flash temperature for locomotive traction gear. Appl Therm Eng 99:528–536CrossRefGoogle Scholar
  17. 17.
    Handschuh RF, Polly J, Morales W (2011) Gear mesh loss-of-lubrication experiments and analytical simulation. NASA TM-2011-217106, May 2011Google Scholar
  18. 18.
    Sutter G, Ranc N (2010) Flash temperature measurement during dry friction process at high sliding speed. Wear 268:1237–1242CrossRefGoogle Scholar
  19. 19.
    Castro J, Seabra J (1998) Scuffing and lubricant film breakdown in FZG gears, part I: analytical and experimental approach. Wear 215:104–113CrossRefGoogle Scholar
  20. 20.
    Handschuh RF, Kicher TP (1996) A method for thermal analysis of spiral bevel gears. Trans ASME J Mech Des 118(4):580–585CrossRefGoogle Scholar
  21. 21.
    DeWinter A, Blok H (1974) Fling-off cooling of gear teeth. J Eng Ind Trans ASME 96(1):60–70CrossRefGoogle Scholar
  22. 22.
    Gardon G, Astarita T, Carlomagno GM (1996) Infrared heat transfer measurements on a rotating disk. Opt Diagn Eng 1(2):1–7Google Scholar
  23. 23.
    Hartnett JP, Deland EC (1961) The influence of Prandtl number on the heat transfer from rotating non-isothermal disks and cones. Trans ASME J Heat Transf 83:95–96CrossRefGoogle Scholar
  24. 24.
    Popiel CZO, Boguslawski L (1975) Load heat-transfer coefficient on the rotating disk in still air. Int J Heat Mass Transf 18:167–170CrossRefGoogle Scholar
  25. 25.
    Dorfman LA. Hydrodynamic resistance and the heat loss of rotating solids. Translated 1963 (Oliver and Boyd)Google Scholar
  26. 26.
    Cheng HS, Patir N (1981) Prediction of the bulk temperature in spur gear based on the finite element temperature analysis. ASLE Trans 22(1):25–36CrossRefGoogle Scholar
  27. 27.
    Blok H (1963) The flash temperature concept. Wear 6(6):483–494CrossRefGoogle Scholar
  28. 28.
    Errichello R (2013) Gear contact temperature and scuffing risk analysis. In: Wang QJ, Chung Y-W (eds) Encyclopedia of tribology. Springer, Boston, pp 1469–1470CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina
  2. 2.State Key Laboratory for High Performance Complex ManufacturingCentral South UniversityChangshaChina

Personalised recommendations