Advertisement

Successive melting and solidification of paraffin–alumina nanomaterial in a cavity as a latent heat thermal energy storage

  • R. Yadollahi FarsaniEmail author
  • A. Raisi
  • Amirhoushang Mahmoudi
Technical Paper
  • 34 Downloads

Abstract

Latent heat thermal energy storage (LHTES) plays a main role in many industrial applications, especially in high-powered electronics cooling systems and providing the thermal energy demand when the energy supply is unavailable. In this study, the LHTES cycle process, including successive melting and solidification, investigates in a two-dimensional annular space of a square cavity filled with nanomaterial of paraffin–alumina as a nanoPCM. In the melting process, all sidewalls of the cavity are insulated. Meanwhile, a constant heat rate generates homogeneously within the central heat source. At the end of melting, the heat generation gets off, while a time-reducing temperature lower than the paraffin melting point imposes on the sidewalls, and then, solidification triggers. The numerical simulation was accomplished using control volume method and the governing equations solved using the SIMPLE algorithm. The enthalpy-porosity method was employed to model the phase-change front. The value of thermal conductivity and the viscosity of the nanofluid have been experimentally measured before the numerical modeling. In this study, the effect of volume fraction of nanoparticles (0–0.03) has been investigated on the successive melting and solidification rate for a constant Rayleigh number of 5.74 × 105. The results show that adding nanoparticles to the PCM equal to the volume fractions of 0.01 and 0.02 improves melting rate, but the nanofluid with the volume fraction of 0.03 represents a poor heat transfer rate during melting even weaker than those for nanofluid with the volume fraction of 0.01. It also observed that the nanomaterial with the volume fraction of φ = 0.03 represents the highest solidification rate. However, taking the overall performance of successive melting and solidification system into account, the nanofluid with the volume fraction of 0.02 remarked the most effective heat transfer rate in comparison with the other examined cases.

Keywords

Successive melting and solidification PCM LHTES Nanomaterial Paraffin Alumina 

List of symbols

b

Enthalpy-porosity coefficient (kg m−3 s−1)

B

Dimensionless enthalpy-porosity coefficient

Bz

Boltzmann constant

c

Specific heat (J kg−1 K−1)

f

Liquid fraction

g

Gravity (m s−2)

h

Enthalpy (J kg−1 K−1)

L, l

Cavity and heat source dimension (m)

k

Thermal conductivity (W m−1 K−1)

Nu

Nusselt number, \(- k_{\text{nf}} /k_{\text{f}} (T_{\text{s}} - T_{\text{m}} )\partial T/\partial n\)

p

Pressure (N m−2)

P

Dimensionless pressure

Pr

Prandtl number, \(Pr = \nu_{\text{f}} /\alpha_{\text{f}}\)

q′″

Heat generation rate (W m−3)

Ra

Rayleigh number, \(g\beta_{\text{f}} q^{{{\prime \prime \prime }}} l^{5} /\nu_{\text{f}} \alpha_{\text{f}} k_{\text{s}}\)

Ste

Stefan number, \(c_{\text{f}} q^{{{\prime \prime \prime }}} l^{2} /h_{\text{nf}} k_{\text{s}}\)

T

Temperature (K)

Tm, Ts

Melting and solidification points (K)

Th, Tc

Hot and cold temperatures (K)

t

Time (s)

u, v

Velocity in the x, y direction (m s−1)

U, V

Dimensionless velocity

x, y

Cartesian coordinate (m)

X, Y

Dimensionless Cartesian coordinate

Abbreviations

CLF

Cavity liquid fraction

PCM

Phase-change material

NePCM

Nano-enhanced PCM

Greek symbols

α

Thermal diffusivity (m2 s−1)

β

Expansion coefficient (K−1)

μ

Dynamic viscosity (N s m−2)

ν

Kinematic viscosity (m2 s−1)

θ

Dimensionless temperature

ρ

Density (kg m−3)

ϕ

Volume fraction

σ

Electrical conduction (S m−1)

τ

Dimensionless time

Subscripts

f, s

Fluid and solid

m

Melting point

nf

Fluid PCM with nanoparticles

ns

Solid PCM with nanoparticles

np

Nanoparticles

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Alva G, Liu L, Huang X, Fang G (2017) Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev 68:693–706CrossRefGoogle Scholar
  2. 2.
    Py X, Azoumah Y, Olives R (2013) Concentrated solar power: current technologies, major innovative issues and applicability to West African countries. Renew Sustain Energy Rev 18:306–315CrossRefGoogle Scholar
  3. 3.
    Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628CrossRefGoogle Scholar
  4. 4.
    De Souza S, Vielmo HA (2005) Numerical analysis of water melting and solidification in the interior of tubes. J Braz Soc Mech Sci Eng 27:119–131CrossRefGoogle Scholar
  5. 5.
    Tian Y, Zhao C-Y (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553CrossRefGoogle Scholar
  6. 6.
    Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307CrossRefGoogle Scholar
  7. 7.
    Jourabian M, Farhadi M, Darzi AR (2012) Simulation of natural convection melting in an inclined cavity using lattice Boltzmann method. Sci Iran 19:1066–1073CrossRefGoogle Scholar
  8. 8.
    Babapoor A, Karimi G (2015) Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: comparison and optimization. Appl Therm Eng 90:945–951CrossRefGoogle Scholar
  9. 9.
    Khodadadi J, Hosseinizadeh S (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf 34:534–543CrossRefGoogle Scholar
  10. 10.
    Hu N, Zhu Z-Q, Li Z-R, Tu J, Fan L-W (2018) Close-contact melting heat transfer on a heated horizontal plate: revisited in the presence of nano-enhanced phase change materials (NePCM). Int J Heat Mass Transf 124:794–799CrossRefGoogle Scholar
  11. 11.
    Sheikholeslami M (2018) Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiwan Inst Chem Eng 86:25–41CrossRefGoogle Scholar
  12. 12.
    Iachachene F, Haddad Z, Oztop HF, Abu-Nada E (2019) Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects. J Mol Liq 318:441–450Google Scholar
  13. 13.
    Sheikholeslami M, Mahian O (2019) Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod 215:963–977CrossRefGoogle Scholar
  14. 14.
    Dadvand A, Boukani NH, Dawoodian M (2018) Numerical simulation of the melting of a NePCM due to a heated thin plate with different positions in a square enclosure. Therm Sci Eng Prog 7:248–266CrossRefGoogle Scholar
  15. 15.
    Feng Y, Li H, Li L, Bu L, Wang T (2015) Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method. Int J Heat Mass Transf 81:415–425CrossRefGoogle Scholar
  16. 16.
    Arıcı M, Tütüncü E, Kan M, Karabay H (2017) Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls. Int J Heat Mass Transf 104:7–17CrossRefGoogle Scholar
  17. 17.
    Sebti SS, Mastiani M, Mirzaei H, Dadvand A, Kashani S, Hosseini SA (2013) Numerical study of the melting of nano-enhanced phase change material in a square cavity. J Zhejiang Univ Sci A 14:307–316CrossRefGoogle Scholar
  18. 18.
    Farsani RY, Raisi A, Nadooshan AA, Vanapalli S (2017) Does nanoparticles dispersed in a phase change material improve melting characteristics? Int Commun Heat Mass Transf 89:219–229CrossRefGoogle Scholar
  19. 19.
    Darzi AR, Farhadi M, Jourabian M (2013) Lattice Boltzmann simulation of heat transfer enhancement during melting by using nanoparticles. Iran J Sci Technol Trans Mech Eng 37:23Google Scholar
  20. 20.
    Boukani NH, Dadvand A, Chamkha AJ (2018) Melting of a Nano-enhanced Phase Change Material (NePCM) in partially-filled horizontal elliptical capsules with different aspect ratios. Int J Mech Sci 149:164–177CrossRefGoogle Scholar
  21. 21.
    Kashani S, Ranjbar A, Madani M, Mastiani M, Jalaly H (2013) Numerical study of solidification of a nano-enhanced phase change material (NEPCM) in a thermal storage system. J Appl Mech Tech Phys 54:702–712CrossRefGoogle Scholar
  22. 22.
    Khodadadi J, Fan L (2009) Expedited freezing of nanoparticle-enhanced phase change materials (NEPCM) exhibited through a simple 1-D stefan problem formulation. In: ASME Summer Heat Transfer Conference, San Francisco, CA, July, 2009, pp 19–23Google Scholar
  23. 23.
    Maxwell JC (1881) A treatise on electricity and magnetism. Clarendon Press, OxfordzbMATHGoogle Scholar
  24. 24.
    Kumar S, Bhoopal RS, Sharma PK, Beniwal RS, Singh R (2011) Non-linear effect of volume fraction of inclusions on the effective thermal conductivity of composite materials: a modified Maxwell model. Open J Compos Mater 1:10CrossRefGoogle Scholar
  25. 25.
    Vand V (1948) Viscosity of solutions and suspensions. I. Theory. J Phys Chem 52:277–299CrossRefGoogle Scholar
  26. 26.
    Mózes G (1983) Paraffin products. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Arasu AV, Mujumdar AS (2012) Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int Commun Heat Mass Transf 39:8–16CrossRefGoogle Scholar
  28. 28.
    Hammerschmidt U, Sabuga W (2000) Transient hot wire (THW) method: uncertainty assessment. Int J Thermophys 21:1255–1278CrossRefGoogle Scholar
  29. 29.
    Shahsavar A, Bahiraei M (2017) Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol 318:441–450CrossRefGoogle Scholar
  30. 30.
    Brent A, Voller V, Reid K (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf Part A Appl 13:297–318Google Scholar
  31. 31.
    Hunter L, Kuttler J (1989) The enthalpy method for heat conduction problems with moving boundaries. J Heat Transf Trans ASME 111:239–242CrossRefGoogle Scholar
  32. 32.
    Zerroukat M, Chatwin CR (1994) Computational moving boundary problems. Research Studies Press, BaldockzbMATHGoogle Scholar
  33. 33.
    Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press, Boca RatonzbMATHGoogle Scholar
  34. 34.
    Voller V, Swaminathan C, Thomas BG (1990) Fixed grid techniques for phase change problems: a review. Int J Numer Methods Eng 30:875–898CrossRefGoogle Scholar
  35. 35.
    Date A (1991) A strong enthalpy formulation for the Stefan problem. Int J Heat Mass Transf 34:2231–2235CrossRefGoogle Scholar
  36. 36.
    Gau C, Viskanta R (1986) Melting and solidification of a pure metal on a vertical wall. J Heat Transf 108:174–181CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Shahrekord BranchIslamic Azad UniversityShahrekordIran
  2. 2.Faculty of EngineeringShahrekord UniversityShahrekordIran
  3. 3.Department of Thermal and Fluid EngineeringUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations