Advertisement

Optimization of cutting parameters for finish turning of 6082-T6 aluminum alloy under dry and RQL conditions

  • Rafael F. Garcia
  • Everton C. Feix
  • Henrique T. Mendel
  • Arnaldo R. Gonzalez
  • André J. SouzaEmail author
Technical Paper

Abstract

Cutting parameters have a significant influence on the surface finish after turning, which can generate unwanted surface roughness. Thus, the parameters optimization could be a favorable strategy to improve the machined part quality. Therefore, the optimization of the cutting speed (vc), feed rate (f) and depth of cut (ap) on finish turning of 6082-T6 aluminum alloy using an uncoated carbide tool (positive rake angles and 0.4 mm tip radius) under dry and reduced quantity lubricant (RQL) conditions was performed. The input variables were combined and randomized via Box–Behnken design of experiments. The surface roughness profiles were recorded, and the roughness parameters Ra and Rz were measured in each combination of parameters. After optimization, the best results of Ra (0.44 μm) and Rz (2.73 μm) after dry machining were obtained with vc = 851 m/min, f = 0.07 mm/rev. and ap = 2 mm. Since RQL machining, the correspondent levels (vc = 403 m/min, f = 0.05 mm/rev., ap = 0.5 mm) resulted in the lowest values of Ra (0.18 μm) and Rz (0.96 μm). The RQL favored the chip formation in turning of AA6082-T6, minimized the occurrence of grooves (scratches), burrs and waviness on the machined surface and generated better surface quality.

Keywords

Finish turning 6082-T6 aluminum alloy Dry and RQL conditions Box–Behnken design 

Notes

Acknowledgements

The authors thank to Quimatic/Tapmatic Co., for donation of nebulizer and cutting fluid; to Foundry Laboratory (LAFUN-UFRGS), for the chemical analysis and to CAPES (Grant 2017/1691358), for the student scholarship.

References

  1. 1.
    Porto AJV et al (2000) Roughness and luminous scattering on turned aluminum surfaces with monocrystalline diamond tools. National Congress of Mechanical Engineering (CONEM). www.abcm.org.br/anais/conem/2000/OC8850.pdf
  2. 2.
    Jeswiet J et al (2008) Metal forming progress since 2000. CIRP J Manuf Sci Technol 1:2–17.  https://doi.org/10.1016/j.cirpj.2008.06.005 CrossRefGoogle Scholar
  3. 3.
    Diniz AE, Marcondes FC, Coppini NL (2013) Tecnologia da Usinagem dos Materiais, 8th edn. Artliber, São PauloGoogle Scholar
  4. 4.
    Ruan Y et al (2012) Mechanical properties and microstructures of 6082-T6 joint welded by twin wire metal inert gas arc welding with the SiO2 flux. Mater Des 35:20–24.  https://doi.org/10.1016/j.matdes.2011.09.002 CrossRefGoogle Scholar
  5. 5.
    Kumar V, Kumar D (2017) Investigation of tensile behavior of cryorolled and room temperature rolled 6082 Al alloy. Mater Sci Eng A 691:211–217.  https://doi.org/10.1016/j.msea.2017.03.051 CrossRefGoogle Scholar
  6. 6.
    Machado AR et al (2011) Teoria da Usinagem dos Materiais, 2nd edn. Blucher, São PauloGoogle Scholar
  7. 7.
    Kishawy HA et al (2005) Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. Int J Mach Tool Manuf 45:219–227.  https://doi.org/10.1016/j.ijmachtools.2004.07.003 CrossRefGoogle Scholar
  8. 8.
    Maher I et al (2014) Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in CNC end milling-ANFIS modeling. Int J Adv Manuf Technol 74:531–537.  https://doi.org/10.1007/s00170-014-6016-z CrossRefGoogle Scholar
  9. 9.
    Barzani MM et al (2015) Investigating the machinability of Al–Si–Cu cast alloy containing bismuth and antimony using coated carbide insert. Measurement 62:170–178.  https://doi.org/10.1016/j.measurement.2014.10.030 CrossRefGoogle Scholar
  10. 10.
    Davoodi B, Tazehkandi AH (2014) Experimental investigation and optimization of cutting parameters in dry and wet machining of aluminum alloy 5083 in order to remove cutting fluid. J Clean Prod 68:234–242.  https://doi.org/10.1016/j.jclepro.2013.12.056 CrossRefGoogle Scholar
  11. 11.
    Eapen J, Murugappan S, Arul S (2017) A study on chip morphology of aluminum alloy 6063 during turning under pre cooled cryogenic and dry environments. Mater Today Proc 4:7686–7693.  https://doi.org/10.1016/j.matpr.2017.07.103 CrossRefGoogle Scholar
  12. 12.
    Kuram E, Ozcelik B, Demirbas E (2013) Environmentally friendly machining: vegetable based cutting fluids, green manufacturing processes and systems. Springer, Berlin, pp 23–47.  https://doi.org/10.1007/978-3-642-33792-5 CrossRefGoogle Scholar
  13. 13.
    Camposeco-Negrete C (2015) Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. J Clean Prod 91:109–117.  https://doi.org/10.1016/j.jclepro.2014.12.017 CrossRefGoogle Scholar
  14. 14.
    Jayaramanaand P, Kumar LM (2014) Multi-response optimization of machining parameters of turning AA6063 T6 aluminium alloy using grey relational analysis in Taguchi method. Procedia Eng 97:197–204.  https://doi.org/10.1016/j.proeng.2014.12.242 CrossRefGoogle Scholar
  15. 15.
    Murugappan S, Arul S, Narayanan SK (2015) Experimental study on turning of AL6063 under cryogenic precooled condition. Proc CIRP 35:61–66.  https://doi.org/10.1016/j.procir.2015.08.048 CrossRefGoogle Scholar
  16. 16.
    Yamane Y et al (2017) A new quantitative evaluation for characteristic of surface roughness in turning. Precis Eng 50:20–26.  https://doi.org/10.1016/j.precisioneng.2017.04.009 CrossRefGoogle Scholar
  17. 17.
    Torres A, Puertas I, Luis CJ (2015) Surface roughness analysis on the dry turning of an Al–Cu alloy. Procedia Eng 132:537–544.  https://doi.org/10.1016/j.proeng.2015.12.530 CrossRefGoogle Scholar
  18. 18.
    Benardos PG, Vosniakos G-C (2003) Predicting surface roughness in machining: a review. Int J Mach Tool Manuf 43:833–844.  https://doi.org/10.1016/S0890-6955(03)00059-2 CrossRefGoogle Scholar
  19. 19.
    Santos RGS (2011) Study of the influence of the application of cutting fluid in machining of AA 7075 aluminum alloy. 65 f. Dissertation, Master’s degree in Mechanical Engineering, UNESP, Guaratinguetá, SP, Brazil. http://hdl.handle.net/11449/121035 (in Portuguese)
  20. 20.
    Moreira LTS (2012) Influence of the application of cutting fluid in turning AA 7075 aluminum alloy, 114 f. Dissertation, Master’s degree in Mechanical Engineering, UNESP, Guaratinguetá, SP, Brazil. http://hdl.handle.net/11449/94423 (in Portuguese)
  21. 21.
    Sreejith PS (2008) Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater Lett 62:276–278.  https://doi.org/10.1016/j.matlet.2007.05.019 CrossRefGoogle Scholar
  22. 22.
    Gonçalves RA (2012) Investigation of the machinability of aluminum alloys of the 6xxx series, 124 f. Dissertation, Master’s degree in Mechanical Engineering, UFU, Uberlândia, MG, Brazil. https://repositorio.ufu.br/bitstream/123456789/14911/1/d.pdf (in Portuguese)
  23. 23.
    Montgomery DC (2013) Design and analysis of experiments, 8th edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Ferreira SLC et al (2007) Statistical designs and response surface techniques for the optimization of chromatographic systems. J Chromatogr A 1158:2–14.  https://doi.org/10.1016/j.chroma.2007.03.051 CrossRefGoogle Scholar
  25. 25.
    ISO 4288 (1996) Geometrical product specifications (GPS)—surface texture: profile method—rules and procedures for the assessment of surface texture. International Organization for Standardization, 12 fGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Rafael F. Garcia
    • 1
  • Everton C. Feix
    • 1
  • Henrique T. Mendel
    • 1
  • Arnaldo R. Gonzalez
    • 1
  • André J. Souza
    • 1
    Email author
  1. 1.Machining Automation Laboratory (LAUS), Department of Mechanical Engineering (DEMEC)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations