Advertisement

Evaluation of thrombogenic potential by partial differential equations in the blood flow dynamics with central venous catheter

  • Jonathas HanielEmail author
  • Thabata Coaglio Lucas
  • Rudolf Huebner
Technical Paper
  • 66 Downloads

Abstract

This paper presents for the first time a numerical prediction of the thrombogenic potential by means of partial differential equation in computational fluid dynamics for cardiovascular devices. To quantify the thrombogenic potential was developed the Platelet Lysis Index equation in an Eulerian model. Six different catheter tip models with the results obtained from the literature, however, with Lagrangian approach were compared. Three-dimensional computational fluid dynamics was done with a realistic central venous catheter model. The partial differential equation covers the entire computational domain, allowing the visualization of the regions with the highest platelet activation. In the realistic catheter, the first arterial proximal hole was the region with the highest Platelet Lysis Index and shear rate. Despite all limitations and considerations, the use of the Eulerian model allows a quick numerical comparison of the thrombogenic potential of cardiovascular device, being a useful tool in its design.

Keywords

Computational fluid dynamics Central venous catheters Platelet activation 

Notes

Authors’ contribution

Jonathas Haniel and Rudolf Huebner analyzed the data and designed, drafted, critically revised and approved the article. Thabata Coaglio Lucas provided the concept and interpreted, drafted, critically revised and approved the article.

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq) under Grant [401217/2016-7].

Compliance with ethical standards

Conflict of interest

The authors have no professional or financial conflicts of interest to disclose.

References

  1. 1.
    Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15:665–673.  https://doi.org/10.1038/nm.1955 CrossRefGoogle Scholar
  2. 2.
    Hansen KB, Arzani A, Shadden SC (2015) Mechanical platelet activation potential in abdominal aortic aneurysms. J Biomech Eng 137:041005.  https://doi.org/10.1115/1.4029580 CrossRefGoogle Scholar
  3. 3.
    Yazdani A, Li H, Humphrey JD, Karniadakis GE (2017) A general shear-dependent model for thrombus formation. PLoS Comput Biol 13:1–24.  https://doi.org/10.1371/journal.pcbi.1005291 CrossRefGoogle Scholar
  4. 4.
    Fulker D, Sayed Z, Simmons A, Barber T (2017) Computational fluid dynamic analysis of the hemodialysis plastic cannula. Artif Organs 41:1035–1042.  https://doi.org/10.1111/aor.12901 CrossRefGoogle Scholar
  5. 5.
    Tosenberger A, Ataullakhanov F, Bessonov N, Panteleev M, Tokarev A, Volpert V (2016) Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method. J Math Biol 72:649–681.  https://doi.org/10.1007/s00285-015-0891-2 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Taylor JO, Yang L, Deutsch S, Manning KB (2017) Development of a platelet adhesion transport equation for a computational thrombosis model. J Biomech 50:114–120.  https://doi.org/10.1016/j.jbiomech.2016.11.012 CrossRefGoogle Scholar
  7. 7.
    Chen Z, Mondal NK, Ding J, Koenig SC, Slaughter MS, Wu ZJ (2016) Paradoxical effect of nonphysiological shear stress on platelets and von Willebrand factor. Artif Organs 40:659–668.  https://doi.org/10.1111/aor.12606 CrossRefGoogle Scholar
  8. 8.
    Consolo F, Sheriff J, Gorla S, Magri N, Bluestein D, Pappalardo F, Slepian MJ, Fiore GB, Redaelli A (2017) High frequency components of hemodynamic shear stress profiles are a major determinant of shear-mediated platelet activation in therapeutic blood recirculating devices. Sci Rep 7:1–14.  https://doi.org/10.1038/s41598-017-05130-51 CrossRefGoogle Scholar
  9. 9.
    Sheriff J, Bluestein D, Girdhar G, Jesty J (2010) High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann Biomed Eng 38:1442–1450.  https://doi.org/10.1007/s10439-010-9936-2 CrossRefGoogle Scholar
  10. 10.
    Chen Z, Mondal NK, Ding J, Koenig SC, Slaughter MS, Wu ZJ (2016) Paradoxical effect of nonphysiological shear stress on platelets and von Willebrand factor. Artif Organs 40:659–668.  https://doi.org/10.1111/aor.12606 CrossRefGoogle Scholar
  11. 11.
    Unsworth AJ, Kriek N, Bye AP, Naran K, Sage T, Flora GD, Gibbins JM (2016) PPARγ agonists negatively regulate αIIbβ3 integrin outside-in signaling and platelet function through up-regulation of protein kinase A activity. J Thromb Haemost 15:356–369.  https://doi.org/10.1111/jth.13578 CrossRefGoogle Scholar
  12. 12.
    Govindarajan V, Zhu S, Li R, Lu Y, Diamond SL, Reifman J, Mitrophanov AY (2018) Impact of tissue factor localization on blood clot structure and resistance under venous shear. Biophys J 114:978–991.  https://doi.org/10.1016/j.bpj.2017.12.034 CrossRefGoogle Scholar
  13. 13.
    Yuan H, Deng N, Zhang S, Cao Y, Wang Q, Liu X, Zhang Q (2012) The unfolded von Willebrand factor response in bloodstream: the self-association perspective. J Hematol Oncol 5:1–10.  https://doi.org/10.1186/1756-8722-5-65 CrossRefGoogle Scholar
  14. 14.
    Goubergrits L, Affeld K (2004) Numerical estimation of blood damage in artificial organs. Artif Organs 28:499–507.  https://doi.org/10.1111/j.1525-1594.2004.07265.x CrossRefGoogle Scholar
  15. 15.
    Hosseinzadegan H, Tafti DK (2017) Modeling thrombus formation and growth. Biotechnol Bioeng 114:2154–2172.  https://doi.org/10.1002/bit.26343 CrossRefGoogle Scholar
  16. 16.
    Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ (2006) Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108:1903–1910.  https://doi.org/10.1182/blood-2006-04-011551 CrossRefGoogle Scholar
  17. 17.
    Mareels G, Kaminsky R, Eloot S, Verdonck PR (2007) Particle Image Velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters. ASAIO J 53:438–446.  https://doi.org/10.1097/MAT.0b013e3180683b7c CrossRefGoogle Scholar
  18. 18.
    Clark TWI, Isu G, Gallo D, Verdonck P, Morbiducci U (2015) Comparison of symmetric hemodialysis catheters using computational fluid dynamics. J Vasc Interv Radiol 26:252–259.  https://doi.org/10.1016/j.jvir.2014.11.004 CrossRefGoogle Scholar
  19. 19.
    Moskalensky AE, Yurkin MA, Muliukov AR, Litvinenko AL, Nekrasov VM, Chernyshev AV, Maltsev VP (2018) Method for the simulation of blood platelet shape and its evolution during activation. PLoS Comput Biol 14:1–22.  https://doi.org/10.1371/journal.pcbi.1005899 CrossRefGoogle Scholar
  20. 20.
    Lucas TC, Tessarolo F, Jakitsch V, Caola I, Brunori G, Nollo G, Huebner R (2014) Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin. Artif Organs 38:556–565.  https://doi.org/10.1111/aor.12243 CrossRefGoogle Scholar
  21. 21.
    Giersiepen M, Wurzinger LJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int J Artif Organs 13:300–306.  https://doi.org/10.1177/039139889001300507 CrossRefGoogle Scholar
  22. 22.
    Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Di Benedetto G, Barbaro V (2004) The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs 28:467–475.  https://doi.org/10.1111/j.1525-1594.2004.00015.x CrossRefGoogle Scholar
  23. 23.
    Bludszuweit C (1995) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19:590–596.  https://doi.org/10.1111/j.1525-1594.1995.tb02386.x CrossRefGoogle Scholar
  24. 24.
    Farinas M-I, Garon A, Lacasse D, N’dri D (2006) Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng 128:688.  https://doi.org/10.1115/1.2241663 CrossRefGoogle Scholar
  25. 25.
    Shibeshi SS, Collins WE (2005) The rheology of blood flow in a branched arterial system. Appl Rheol 15:398–405.  https://doi.org/10.1901/jaba.2005.15-398 CrossRefGoogle Scholar
  26. 26.
    AbuRahma A, Bandyk D (2012) Noninvasive vascular diagnosis: a practical guide to therapy. Springer, Berlin.  https://doi.org/10.1007/978-3-319-54760-2 CrossRefGoogle Scholar
  27. 27.
    Faghih MM, Sharp MK (2019) On Eulerian versus Lagrangian models of mechanical blood damage and the linearized damage function. Artif Organs 1:1–7.  https://doi.org/10.1111/aor.13423 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of NursingUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations