Advertisement

A swarm intelligence-based approach for reliability–redundancy allocation problems

  • Najeh Ben GuedriaEmail author
  • Hichem Hassine
Technical Paper
  • 43 Downloads

Abstract

This paper presents a new algorithm belonging to the class of swarm intelligence methods, called the adaptive simplified PSO (ASPSO)-based algorithm, for solving reliability–redundancy allocation problems. In this constrained nonlinear mixed-integer problem, both the number of redundant components and their reliability in each subsystem are to be decided simultaneously so as to maximize the reliability of the system. The proposed ASPSO operates with a new updating model to adjust the position of particles, without dealing with velocity. In addition, a randomization technique, based on the dispersion of particle bests through the search space, is used to speed up the convergence of the proposed approach and prevent it from being trapped within the local optimum. Moreover, to control the balance between exploration and exploitation, during the search process, two adaptive functions are utilized. The simulation results of four different benchmarks for the reliability–redundancy allocation problem are reported and compared. Accordingly, the solutions given by the new presented approach are all superior to those best known solutions provided by several methods in the literature.

Keywords

Reliability optimization Redundancy allocation Particle swarm optimization Particles dispersion Adaptive function 

Notes

References

  1. 1.
    Aslett LJM, Coolen FPA, Wilson SP (2015) Bayesian inference for reliability of systems and networks using the survival signature. Risk Anal 35:1640–1651.  https://doi.org/10.1111/risa.12228 CrossRefGoogle Scholar
  2. 2.
    Saboori H, Hemmati R, Jirdehi MA (2015) Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems. Energy 93:2299–2312.  https://doi.org/10.1016/j.energy.2015.10.125 CrossRefGoogle Scholar
  3. 3.
    Ye Z-S, Xie M (2015) Stochastic modelling and analysis of degradation for highly reliable products. Appl Stoch Models Bus Ind 31:16–32.  https://doi.org/10.1002/asmb.2063 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Garg H, Rani M, Sharma SP, Vishwakarma Y (2014) Bi-objective optimization of the reliability–redundancy allocation problem for series–parallel system. J Manuf Syst 33:335–347.  https://doi.org/10.1016/j.jmsy.2014.02.008 CrossRefGoogle Scholar
  5. 5.
    Chern M-S (1992) On the computational complexity of reliability redundancy allocation in a series system. Oper Res Lett 11:309–315.  https://doi.org/10.1016/0167-6377(92)90008-Q MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Misra KB, Ljubojevic MD (1973) Optimal reliability design of a system: a new look. IEEE Trans Reliab R-22:255–258.  https://doi.org/10.1109/tr.1973.5215673 CrossRefGoogle Scholar
  7. 7.
    Tian Z, Zuo MJ, Huang H (2008) Reliability–redundancy allocation for multi-state series–parallel systems. IEEE Trans Reliab 57:303–310.  https://doi.org/10.1109/TR.2008.920871 CrossRefGoogle Scholar
  8. 8.
    Ha C, Kuo W (2006) Reliability redundancy allocation: an improved realization for nonconvex nonlinear programming problems. Eur J Oper Res 171:24–38.  https://doi.org/10.1016/j.ejor.2004.06.006 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Agarwal M, Gupta R (2005) Penalty function approach in heuristic algorithms for constrained redundancy reliability optimization. IEEE Trans Reliab 54:549–558.  https://doi.org/10.1109/TR.2005.853285 CrossRefGoogle Scholar
  10. 10.
    Ha C, Kuo W (2006) Multi-path heuristic for redundancy allocation: the tree heuristic. IEEE Trans Reliab 55:37–43.  https://doi.org/10.1109/TR.2005.859227 CrossRefGoogle Scholar
  11. 11.
    Kim J-H, Yum B-J (1993) A heuristic method for solving redundancy optimization problems in complex systems. IEEE Trans Reliab 42:572–578.  https://doi.org/10.1109/24.273585 CrossRefzbMATHGoogle Scholar
  12. 12.
    Sun XL, Li D (2002) Optimality condition and branch and bound algorithm for constrained redundancy optimization in series systems. Optim Eng 3:53–65.  https://doi.org/10.1023/A:1016541912439 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sup SC, Kwon CY (1999) Branch-and-bound redundancy optimization for a series system with multiple-choice constraints. IEEE Trans Reliab 48:108–117.  https://doi.org/10.1109/24.784268 CrossRefGoogle Scholar
  14. 14.
    Misra KB, Sharma U (1991) An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE Trans Reliab 40:81–91.  https://doi.org/10.1109/24.75341 CrossRefzbMATHGoogle Scholar
  15. 15.
    Nakagawa Y, Miyazaki S (1981) Surrogate constraints algorithm for reliability optimization problems with two constraints. IEEE Trans Reliab R-30:175–180.  https://doi.org/10.1109/tr.1981.5221024 CrossRefzbMATHGoogle Scholar
  16. 16.
    Hikita M, Nakagawa Y, Nakashima K, Narihisa H (1992) Reliability optimization of systems by a surrogate-constraints algorithm. IEEE Trans Reliab 41:473–480.  https://doi.org/10.1109/24.159825 CrossRefzbMATHGoogle Scholar
  17. 17.
    Yokota T, Gen M, Li Y-X (1996) Genetic algorithm for non-linear mixed integer programming problems and its applications. Comput Ind Eng 30:905–917.  https://doi.org/10.1016/0360-8352(96)00041-1 CrossRefGoogle Scholar
  18. 18.
    Hsieh Y-C, Chen T-C, Bricker DL (1998) Genetic algorithms for reliability design problems. Microelectron Reliab 38:1599–1605.  https://doi.org/10.1016/S0026-2714(98)00028-6 CrossRefGoogle Scholar
  19. 19.
    Coit DW, Smith AE (1996) Reliability optimization of series–parallel systems using a genetic algorithm. IEEE Trans Reliab 45:254–260.  https://doi.org/10.1109/24.510811 CrossRefGoogle Scholar
  20. 20.
    Gen M, Jong RK (1999) GA-based reliability design: state-of-the-art survey. Comput Ind Eng 37:151–155.  https://doi.org/10.1016/S0360-8352(99)00043-1 CrossRefGoogle Scholar
  21. 21.
    Gen M, Yun Y (2006) Soft computing approach for reliability optimization: state-of-the-art survey. Reliab Eng Syst Saf 91:1008–1026.  https://doi.org/10.1016/j.ress.2005.11.053 CrossRefGoogle Scholar
  22. 22.
    Daniel E, Salazar A, Claudio M, Rocco S (2007) Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): a reliability application. Reliab Eng Syst Saf 92:697–706.  https://doi.org/10.1016/j.ress.2006.03.003 CrossRefGoogle Scholar
  23. 23.
    Taguchi T, Yokota T, Gen M (1998) Reliability optimal design problem with interval coefficients using hybrid genetic algorithms. Comput Ind Eng 35:373–376.  https://doi.org/10.1016/S0360-8352(98)00097-7 CrossRefGoogle Scholar
  24. 24.
    Tian Z, Zuo MJ (2006) Redundancy allocation for multi-state systems using physical programming and genetic algorithms. Reliab Eng Syst Saf 91:1049–1056.  https://doi.org/10.1016/j.ress.2005.11.039 CrossRefGoogle Scholar
  25. 25.
    Wang L, Li LP (2012) A coevolutionary differential evolution with harmony search for reliability–redundancy optimization. Expert Syst Appl 39:5271–5278.  https://doi.org/10.1016/j.eswa.2011.11.012 CrossRefGoogle Scholar
  26. 26.
    Kulturel-Konak S, Smith AE, Coit DW (2003) Efficiently solving the redundancy allocation problem using tabu search. IIE Trans 35:515–526.  https://doi.org/10.1080/07408170304422 CrossRefGoogle Scholar
  27. 27.
    Ouzineb M, Nourelfath M, Gendreau M (2008) Tabu search for the redundancy allocation problem of homogenous series–parallel multi-state systems. Reliab Eng Syst Saf 93:1257–1272.  https://doi.org/10.1016/j.ress.2007.06.004 CrossRefGoogle Scholar
  28. 28.
    Jang KW, Kim JH (2011) A tabu search for multiple multi-level redundancy allocation problem in series–parallel systems. Int J Ind Eng Theory Appl Pract 18:120–129Google Scholar
  29. 29.
    Agarwal M, Sharma VK (2010) Ant colony approach to constrained redundancy optimization in binary systems. Appl Math Model 34:992–1003.  https://doi.org/10.1016/j.apm.2009.07.016 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ahmadizar F, Soltanpanah H (2011) Reliability optimization of a series system with multiple-choice and budget constraints using an efficient ant colony approach. Expert Syst Appl 38:3640–3646.  https://doi.org/10.1016/j.eswa.2010.09.018 CrossRefGoogle Scholar
  31. 31.
    Chen T-C (2006) IAs based approach for reliability redundancy allocation problems. Appl Math Comput 182:1556–1567.  https://doi.org/10.1016/j.amc.2006.05.044 CrossRefzbMATHGoogle Scholar
  32. 32.
    Hsieh YC, You PS (2011) An effective immune based two-phase approach for the optimal reliability–redundancy allocation problem. Appl Math Comput 218:1297–1307.  https://doi.org/10.1016/j.amc.2011.06.012 MathSciNetCrossRefGoogle Scholar
  33. 33.
    dos Santos Coelho L, de Andrade Bernert DL, Mariani VC (2011) A chaotic firefly algorithm applied to reliability–redundancy optimization. In: 2011 IEEE congress of evolutionary computation (CEC), pp 517–521. IEEE.  https://doi.org/10.1109/cec.2011.5949662
  34. 34.
    Garg H, Rani M, Sharma SP (2013) An efficient two phase approach for solving reliability–redundancy allocation problem using artificial bee colony technique. Comput Oper Res 40:2961–2969.  https://doi.org/10.1016/j.cor.2013.07.014 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yeh W-C, Hsieh T-J (2011) Solving reliability redundancy allocation problems using an artificial bee colony algorithm. Comput Oper Res 38:1465–1473.  https://doi.org/10.1016/j.cor.2010.10.028 MathSciNetCrossRefGoogle Scholar
  36. 36.
    He Q, Hu X, Ren H, Zhang H (2015) A novel artificial fish swarm algorithm for solving large-scale reliability–redundancy application problem. ISA Trans 59:105–113.  https://doi.org/10.1016/j.isatra.2015.09.015 CrossRefGoogle Scholar
  37. 37.
    Zou D, Gao L, Wu J, Li S, Li Y (2010) A novel global harmony search algorithm for reliability problems. Comput Ind Eng 58:307–316.  https://doi.org/10.1016/j.cie.2009.11.003 CrossRefGoogle Scholar
  38. 38.
    Zou D, Gao L, Li S, Wu J (2011) An effective global harmony search algorithm for reliability problems. Expert Syst Appl 38:4642–4648.  https://doi.org/10.1016/j.eswa.2010.09.120 CrossRefGoogle Scholar
  39. 39.
    Afonso LD, Mariani VC, Dos Santos Coelho L (2013) Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability–redundancy optimization. Expert Syst Appl 40:3794–3802.  https://doi.org/10.1016/j.eswa.2012.12.093 CrossRefGoogle Scholar
  40. 40.
    Garg H (2015) An approach for solving constrained reliability–redundancy allocation problems using cuckoo search algorithm. Beni-Suef Univ J Basic Appl Sci 4:14–25.  https://doi.org/10.1016/j.bjbas.2015.02.003 CrossRefGoogle Scholar
  41. 41.
    Kumar A, Pant S, Ram M (2017) System reliability optimization using gray wolf optimizer algorithm. Qual Reliab Eng Int 33:1327–1335.  https://doi.org/10.1002/qre.2107 CrossRefGoogle Scholar
  42. 42.
    Garg H (2015) An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm Evol Comput 24:1–10.  https://doi.org/10.1016/j.swevo.2015.05.001 CrossRefGoogle Scholar
  43. 43.
    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science, pp 39–43. IEEE.  https://doi.org/10.1109/mhs.1995.494215
  44. 44.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, pp 1942–1948. IEEE.  https://doi.org/10.1109/icnn.1995.488968
  45. 45.
    Ben Guedria N (2016) Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl Soft Comput J 40:455–467.  https://doi.org/10.1016/j.asoc.2015.10.048 CrossRefGoogle Scholar
  46. 46.
    Garg H (2016) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274:292–305.  https://doi.org/10.1016/J.AMC.2015.11.001 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Chang HH, Lin LS, Chen N, Lee WJ (2013) Particle-swarm-optimization-based nonintrusive demand monitoring and load identification in smart meters. IEEE Trans Ind Appl 49:2229–2236.  https://doi.org/10.1109/TIA.2013.2258875 CrossRefGoogle Scholar
  48. 48.
    Milner S, Davis C, Zhang H, Llorca J (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11:1207–1222.  https://doi.org/10.1109/TMC.2011.141 CrossRefGoogle Scholar
  49. 49.
    Bashir ZA, El-Hawary ME (2009) Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans Power Syst 24:20–27.  https://doi.org/10.1109/TPWRS.2008.2008606 CrossRefGoogle Scholar
  50. 50.
    Zhang Y, Wang S, Ji G (2014) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng.  https://doi.org/10.1155/2015/931256 CrossRefGoogle Scholar
  51. 51.
    Nouaouria N, Boukadoum M, Proulx R (2013) Particle swarm classification: a survey and positioning. Pattern Recogn 46:2028–2044.  https://doi.org/10.1016/j.patcog.2012.12.011 CrossRefGoogle Scholar
  52. 52.
    dos Santos Coelho L (2009) An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications. Reliab Eng Syst Saf 94:830–837.  https://doi.org/10.1016/j.ress.2008.09.001 CrossRefGoogle Scholar
  53. 53.
    Yeh WC (2009) A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Syst Appl 36:9192–9200.  https://doi.org/10.1016/j.eswa.2008.12.024 CrossRefGoogle Scholar
  54. 54.
    Wu P, Gao L, Zou D, Li S (2011) An improved particle swarm optimization algorithm for reliability problems. ISA Trans 50:71–81.  https://doi.org/10.1016/j.isatra.2010.08.005 CrossRefGoogle Scholar
  55. 55.
    Huang C-L (2015) A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems. Reliab Eng Syst Saf 142:221–230.  https://doi.org/10.1016/j.ress.2015.06.002 CrossRefGoogle Scholar
  56. 56.
    Ouyang Z, Liu Y, Ruan SJ, Jiang T (2019) An improved particle swarm optimization algorithm for reliability–redundancy allocation problem with mixed redundancy strategy and heterogeneous components. Reliab Eng Syst Saf 181:62–74.  https://doi.org/10.1016/j.ress.2018.09.005 CrossRefGoogle Scholar
  57. 57.
    Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73.  https://doi.org/10.1109/4235.985692 CrossRefGoogle Scholar
  58. 58.
    Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18:327–340.  https://doi.org/10.1016/j.cnsns.2012.07.017 MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, BeckingtonGoogle Scholar
  60. 60.
    Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287.  https://doi.org/10.1016/s0045-7825(01)00323-1 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Kuo W, Hwang C-L, Tillman FA (1978) A note on heuristic methods in optimal system reliability. IEEE Trans Reliab R-27:320–324.  https://doi.org/10.1109/tr.1978.5220401 CrossRefzbMATHGoogle Scholar
  62. 62.
    Xu Z, Kuo W, Lin H-H (1990) Optimization limits in improving system reliability. IEEE Trans Reliab 39:51–60.  https://doi.org/10.1109/24.52612 CrossRefzbMATHGoogle Scholar
  63. 63.
    Dhingra AK (1992) Optimal apportionment of reliability and redundancy in series systems under multiple objectives. IEEE Trans Reliab 41:576–582.  https://doi.org/10.1109/24.249589 CrossRefzbMATHGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Higher Institute of Transport and Logistics of SousseUniversity of SousseSousseTunisia
  2. 2.Mechanical Laboratory of Sousse (LMS)National school of Engineering of SousseSousseTunisia
  3. 3.Mechanics, Modelling and Manufacturing Laboratory (LA2MP)National School of Engineers of SfaxSfaxTunisia

Personalised recommendations